FCE826 Lecture 5:

Stability of Empirical Risk Minimizers



Contents

e Parameter count bounds for ERM
e VVC dim and Rademacher Complexity generalization bounds

e Do these bounds explain generalization iIn modern ML?

* What are we missing!



Some Definrtions

e Our goal is to find a hypothesis (classifier) h¢ with small expected risk
R[hS] — [E(x,y)NQZ [f(hS(x)ay)]

* [he loss measures the disagreement between predictions and reality

e Since we can't directly measure R[h¢| (our true cost function), we can
consider optimizing Its sample -average proxy, .e., the empirical risk

Rlhg] = Z £ (hg(x,): y,)

e Our hope is that R[hS] s close to R[hS]




I he generalization gap

* [he gap of the true cost function from the one we have access to

€gen = | Rlg] — Rhg] |

o Question:When is it possible to bound €,,, by a small constant!

en

* [he answer must depend on:
) n, the sample size
2) # ,the hypothesis class (and its geometry)

3) &), the data distribution
4) the optimization algorithm that outputs our classifier]




Previously: parameter/complexity bounds

* |f Floatstparametric model => n > > #params for good generalization
(H.l.+Union bound over all classifiers)

e |f Infinite class, then VC-dim can help in bounded the error, with not
much better bound than n > > #params for good generalization

e Compression argsuments can lead to better results for nearly sparse/low-
rank models

e RC not useful when model memorizes (happens in practice)




—low to make the algorithm
part of the equation!?
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Algorithmic Stability

earning algorithm A(S) is stable If:
“the trained classifier does not depend too much on one data point”

Let S’ = original data set, but with z; data point replaced by Z;

Def: Stability™

=5, [105S(A(S); 2;) — loss(A(S);z) | <6

Thm: (Bousquet and Elisseeff 2002) [amazing paper, please read]

0-stable algorithms achieve 0 generalization gap




Many stability notions

Replace-one stabllity:

=2 | 105S(A(S); 2;) — \oss(A(Si);zi)| <

Hypothesis stability:

l0ss(A(S); z) — \oss(A(Si);Z)| <o

=P

-rror stability:

VS, 0ss(A(S); 2) — loss(A(SY):; 2)| < 6

Uniform stability:
VS,i,z, |loss(A(S);2) —loss(A(SY):2)| <6



Many stability notions

-rror stability:

VS,i E. |loss(A(S);2) — loss(A(SY):2)| < &

Uniform stability:
VS,i,z, |loss(A(S);2) —loss(A(SY):2)| <6



Many stability notions




Stability <=> (Generalization



Stability = Generalization

°roof by renaming

—etS:{Zla---,Zn}, Sj:{Zl,- / Zn}

° e ]’9

oen gap = (empirical risk) — (true risk)

1 n
9 [;Z oss(A(S);zj)] — [Eg 4 0sS(A(S); 2)
j=1

1 n
o [;Z OSS(A(S);ZJ-)] — Eg4,1055(A(S); 7))
j=1

_S,A,z]floss(A(Sj ); Zj) —

A 0ss(A(S); z7) — loss(A(S); 2))

1 « |
" Z =5.4,1055(A(S); 77) — Eg 4 -A0sS(A(S); 7))

=5,4,2/055(A(5); 7))




Stability = Generalization

* Proof by renaming |

. LletS={z,....5,}, & ={zp...2...5,)

oen gap = (empirical risk) — (true risk)

- —S,A,7 A T W Wik >
i=1

5.4,1055(A(S); 7)) — Eg 4 A0sS(A(S); 2)

5.2 |105S(A(S); 7)) — 0ss(A(S); 7))




Stable Algorithms generalize wel

Q:Which algorithms are stable?



Example O

* Irnivial example of stable algorithm:

h(W; x) =



-xample |:k-NN

-xample training set:

Resampled training set:




-xample |:k-NN

-xample training set:

Resampled training set:

Probability of difference Iin predictions:
Pr (hS(x) + hSi(x)) < Pr (a neigshbor of x Is resamp\ed)



-xample |:k-NN

-xample training set: ® ©
® ‘*
Resampled traini ' ® %
pled training set:
® ©
*

Probability of difference Iin predictions:
Pr (hS(x) + hS,-(x)) < Pr (a neigshbor of x Is resamp\ed)

Stability: loss(hg(x); ¥) — loss(hg(x); y) = Pr (hg(x) # y) — Pr (hg(x) # y) =



-xample |:k-NN

e o ¢
C*O

-xample training set:

Stability: loss(hg(x); ¥) — loss(hg(x); y) = Pr (hg(x) # y) — Pr (hg(x) # y) =



Before we move on: Loss functions

The more information we have about the “loss landscape’ easier the more we can say
about stability/generalization AND optimization

The “class” of the loss functions changes dramatically the guarantees one can get
[t can change things from learnable to non learnable, from poly-solvable to NP-hard

et's see some standard definitions




Lipschitzness & smoothness

Lipschitz: “A function cant change too fast”

Def.:

A function f(w) is L-Lipschitz on ' if
fov) =) | < L [lw = wll, Y, w' €



Lipschitzness & smoothness

* Lipschitzz A function can't change too fast’

Def.:

A function f(w) is L-Lipschitz on ' if
fov) =) | < L [lw = wll, Y, w' €

*  Smooth:”A function whose gradients can't change too fast”
Def.:

A function f(w) is f-Lipschitz on # if
VW) = VW)l <5 - [lw=will, Vw,w e #W



Lipschitzness & smoothness

* Lipschitz: “A function can't change too fast”

Def.:

A function f(w) is L-Lipschitz on ' if
fov) =) | < L [lw = wll, Y, w' €

*  Smooth:”A function whose gradients can't change too fast”
Def.:

A function f(w) is f-Lipschitz on # if
VW) = VW)l <5 - [lw=will, Vw,w e #W

P
>

Also, f(w) < fw') + (VAW), w — w') + =|lw — w||* (implying f(w) < flw*) + gHw — w*||)



Convexity

“A function that looks like a bowl!”

Def.:

A function f(w) is convex on ' if

fla-w+ (1 =a) -w) < afiw) + (1 —a)f(w)



Convexity

e “A function that looks like a bowl!”

Def.:

A function f(w) is convex on ' if

fla-w+ (1 =a) -w) < afiw) + (1 —a)f(w)

« (Convexity makes our lives much easier (more on next lecture).
* Most useful property (for us)

(VAW w' = w) 2 fw') = fow®)

oradient Is always positively correlated with the right direction towards OFP




Strong Convexity

“The best kind of convexity”

Def.:

A function f(w) is A-strongly convex on #" if
A
fw) 2 fw) + (VW) w—w’) + EHW - w||?



Strong Convexity

* “The best kind of convexity”

Def.:

A function f(w) is A-strongly convex on #" if
A
fw) 2 fw) + (VW) w—w’) + EHW - w||?

* A way to think of this: a fnct always lower bounded by a quadratic centered at OP1, L.e,

A 2
fw) 2 Jw) + Zllw —w|



Polyak rojasiewicz (PL) functions

“The best kind of non-convex function”

Def.:

A function f(w) is u-PL on Wlif
EHVf(W)H > - (fw) =f*), Vw e W




Polyak rojasiewicz (PL) functions

“The best kind of non-convex function”

Def.:

A function f(w) is u-PL on Wlif
EHVf(W)H > - (fw) =f*), Vw e W

T the gradient Is zero, you're at a global minimum (all local minima = global min )



Polyak rojasiewicz (PL) functions

“The best kind of non-convex function”

Def.:

A function f(w) is u-PL on Wlif
EHVf(W)H > - (fw) =f*),Vwe#W




cxample 2: Minimizers of Str. Cvx Functions

We would like to get a stability bound on

A(S) = w* = arg min (RS(W) — %Z £(w; z))

=1



cxample 2: Minimizers of Str. Cvx Functions

We would like to get a stability bound on
. I ¢
A(S) = w* = arg min (RS(W) = — Z £(w; Z,-))
w n i1
A
Assuming that Rg(w) > Rq(w’) + (VR(W'),w — w’) + EHW —w/||?



cxample 2: Minimizers of Str. Cvx Functions

We would like to get a stability bound on
1 n
AWS) =w* =argmin | Rg(w) = — Z £(w; z;)
W n i1
A
Assuming that Rg(w) > Rq(w’) + (VR(W'),w — w’) + EHW — w'||?
What does str. convexity give us! Let's evaluate 1t at the opt

)
R(w) > Ri(w*) + ( VR(W*), w — w*) + Euw — w¥||?



cxample 2: Minimizers of Str. Cvx Functions

We would like to get a stability bound on
1 n
AWS) =w* =argmin | Rg(w) = — Z £(w; z;)
W n i1
A
Assuming that Rg(w) > Rq(w’) + (VR(W'),w — w’) + EHW — w'||?
What does str. convexity give us! Let's evaluate 1t at the opt

)
R(w) > Ri(w*) + ( VR(W*), w — w*) + Euw — w¥||?

A
Rs(W) > Rs(W*) + EHW — W*HZ



cxample 2: Minimizers of Str. Cvx Functions

We would like to get a stability bound on
1 n
AWS) =w* =argmin | Rg(w) = — Z £(w; z;)
W n i1
A
Assuming that Rg(w) > Rq(w’) + (VR(W'),w — w’) + EHW — w'||?
What does str. convexity give us! Let's evaluate 1t at the opt

A
Rs(W) > Rs(W*) T <VR5(W*)9 w—w*) + EHW — W*Hz

A
Rs(W) > Rs(W*) + EHW — W*HZ

A
Rs(W) — Rs(W*) > EHW — W*Hz



cxample 2: Minimizers of Str. Cvx Functions

* We would like to get a stability bound on
1 n
AWS) =w* =argmin | Rg(w) = — Z £(w; z;)
W n i1
A
. Assuming that Rg(w) > Ri(w’) + ( VR(W'),w —w') + EHW — w'||?
* What does str. convexity give us! Let's evaluate 1t at the opt

A
Rs(W) > Rs(W*) T <VR5(W*)9 w—w*) + EHW — W*Hz

A
Rs(W) > Rs(W*) + EHW — W*HZ

R(w) — Ry(w*) > Euw — w¥||? we will use this



cxample 2: Minimizers of Str. Cvx Functions

Note that we can apply the str.cvx bound on both minimizers

Sl = W < Ry(w¥) = Ry

_I_

Sllw = W < Ry00%) = Ry



cxample 2: Minimizers of Str. Cvx Functions

* Note that we can apply the str.cvx bound on both minimizers

Sl = W < Ry(w¥) = Ry

_I_

Sllw = W < Ry00%) = Ry

* [|his gives us
Aw* = wH[|* < (Rg(w¥) — Rg(w*)) + (Rg((W*) — Rg(w}))

% _ k]2 l K. _ X k. _ .
Allw* — w7 < n (Zf(wi ) — (W 2) + Zf(w ;2) — (W, ,z))

7ES ZES"



cxample 2: Minimizers of Str. Cvx Functions

* Note that we can apply the str.cvx bound on both minimizers
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_I_
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cxample 2: Minimizers of Str. Cvx Functions

* Note that we can apply the str.cvx bound on both minimizers

Sl = W < Ry(w¥) = Ry

_I_

Sllw = W < Ry00%) = Ry

* [|his gives us
Aw* = wH[|* < (Rg(w¥) — Rg(w*)) + (Rg((W*) — Rg(w}))

% _ k]2 l K. _ X k. _ .
Allw* — w7 < n (Zf(wi ) — (W 2) + Zf(w ;2) — (W, ,z))

7ES ZES"

1
Miw* = w2 < — (2003 2) = £0v%32) + £Ow5 ) = w52 )

n



cxample 2: Minimizers of Str. Cvx Functions

* Note that we can apply the str.cvx bound on both minimizers

Sl = W < Ry(w¥) = Ry

_I_

EHW* — W[ < Rg(W*) — Rgi(w)
* [|his gives us
Alw* = w¥[|* < (Rg(w*) — Ryw™*)) + (Rgi(w*) — Rgi(w*))

% _ k]2 l K. _ X k. _ .
Allw* — w7 < n (Zf(wi ) — (W 2) + Zf(w ;2) — (W, ,z))

7ES ZES"

1
Miw* = w2 < — (2003 2) = £0v%32) + £Ow5 ) = w52 )

n

2L
Allw™ — w.*H2 < —|lw* = w¥|| = Allw* —w*|| < —
l ) l l /’tn

e Now we're almost done.



cxample 2: Minimizers of Str. Cvx Functions

Strong convexity and Lipschitzness imply [[w* — w*|| < >
‘ n



cxample 2: Minimizers of Str. Cvx Functions

Strong convexity and Lipschitzness imply [[w* — w*|| < >
‘ n

Reapplying L-Lipschitz, we obtain

[ C(W*2) = (W 2)| < L||w* —wF[| <

L2

An




cxample 2: Minimizers of Str. Cvx Functions

. Strong convexity and Lipschitzness imply ||[w* — w¥*|| < —
l n

* Reapplying L-Lipschitz, we obtain

[ CW*52) —C(WF2) | < L||w* = wi|| <

L2

An

Theorem:

et the empirical risk be a strongly convex function for all data sets, the loss be bounded and
- LA . 2Lf | |
Lipschitz. Then, A(S) = argmin L(w) is a p -stable learning algorithm
w n




cxample 2: Minimizers of Str. Cvx Functions

* Reapplying L-Lipschitz, we obtain

[ C(W*2) = (W 2)| < L||w* —wF[| <

L2

An

Theorem:

Let the empirical risk be a strongly convex function for all data sets, the loss be bounded and
L s . 217 | |
Lipschitz. Then, A(S) = argmin L(w) is a p -stable learning algorithm
w n




cxample 2: Minimizers of Str. Cvx Functions

e Reapplvineg L-Lipschitz, we obtain

Theorem:

Let the empirical risk be a strongly convex function for all data sets, the loss be bounded and
L s . 217 | |
Lipschitz. Then, A(S) = argmin L(w) is a p -stable learning algorithm
w n




cxample 3: Minimizers of PL Functions

An empirical loss function is g-PL if
2

1
V— ) C(w;z > ullw — w*
- Z wiz) || 2 ul u




cxample 3: Minimizers of PL Functions

An empirical loss function is g-PL if
2

1
V— ) C(w;z > ullw — w*
- Z wiz) || 2 ul u

Proof of stability:
| £(w;2) — £w5 2)| < Lljw* — w|



cxample 3: Minimizers of PL Functions

* An empirical loss function is Y-PL It
2

1
V— ) C(w;z > ullw — w*
- Z wiz) || 2 ul u

* Proof of stablility:
[ Z(w*;2) = (W 2) | < L||w* — w||

L

< —
H

1
V— £ (w*:
L2 L0

ZE€S




cxample 3: Minimizers of PL Functions

* An empirical loss function is Y-PL It
2

1
V— ) C(w;z > ullw — w*
- Z wiz) || 2 ul u

* Proof of stablility:
[ Z(w*;2) = (W 2) | < L||w* — w||

L ]
<— || V=) £wH;2)
H & ZES
Ll 1 ’
<— || V=2(w¥; z)
H no




cxample 3: Minimizers of PL Functions

* An empirical loss function is Y-PL It
2

1
V— ) C(w;z > ullw — w*
- Z wiz) || 2 ul u

* Proof of stablility:
[ Z(w*;2) = (W 2) | < L||w* — w||

< L V— Z (W z)

H ZES
2

L 1

< — V_K(Wi*QZi)
U n
L

<L vewsia|
122¢



xample 3: Minimizers of PL Functions

* An empirical loss function is Y-PL It
2

1
V— ) C(w;z > ullw — w*
- Z wiz) || 2 ul u

Theorem:

et the empirical risk be PL+Lipschitz+bounded gradients by.

.~ . 2LD? | |
Then, A(S) = argmin Ly(w) is a -stable learning algorithm
W

1224




cxample 3: Minimizers of PL Functions

AN emp -1Hle alailela -

Theorem:

Let the empirical risk be PL+Lipschitzt+bounded gradients by.

.~ . 2LD? | |
Then, A(S) = argmin Ly(w) is a -stable learning algorithm
W

1224
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Local minima Global minima

h?
I |
2D
bDepar (a) Loss landscape of under-parameterized models (b) Loss landscape of over-parameterized models Jetworks
Figure 1: Panel (a): Loss landscape is locally convex at local minima. Panel (b): Loss landscape ng

incompatible with local convexity as the set of global minima is not locally linear. o edu
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Wrapping-up Generalization



Other Avenues to (Generlization:
PAC-Bayes bounds

* [he training algorithm as a sampling distribution on #

Theorem:

et P be a prior distribution on Z'. Let QO be the “trained” distribution for sampling a classifier: Then

KL P
Ggen[Q] S 0, (\/ (Zin‘ ))




Other Avenues to Generlization:
Information [ heoretic Bounds

* [he training algorithm as a sampling distribution on #

Theorem (information):

Let A(S) be a randomized learning algorithm. Then,
I(A(S): S
A SO(\/ (AS) >>
n

* Algorithms that “leak’ little information generalize better!
*Relates to stability/differential privacy




VWrapping up

Generalization bounds = saying it will work without running it

VC dim bounds
Parameter count

Rademacher comp

~ nalve parameter count bounds
bounds can get fancy with compression arguments

exit

Stability begets genera

Open Qs:

'y doesn't always give interesting bounds In practice
ization! Many Interesting minimizers are stable

Are optimization algorithms like SGD stable?
Stability and loss geometry not well understood

Connections to Imp

Can we certr
Combine wit

v sta

D

it regularization?
ity with limited access to data’

N compression arguments?

8
.....
-




VWrapping up

Generalization bounds = saying it will work without running it

VC dm bounds = naive parameter count bounds

Parameter count bounds

Stability begets genera

Open Os:

Rademacher complexr

can get fancy with compression argu

ments

'y doesn't always give interesting

bounds In practice

ization! Many Interesting minimizers are stable




Next [ime: OP [ Algorithms

-orget about the Why's, let's talk
about the How's
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