ECE826 Lecture 5:

Stability of Empirical Risk Minimizers

Contents

- Parameter count bounds for ERM
- VC dim and Rademacher Complexity generalization bounds
- Do these bounds explain generalization in modern ML?
- What are we missing?

Some Definitions

ullet Our goal is to find a hypothesis (classifier) h_S with small expected risk

$$R[h_S] = \mathbb{E}_{(x,y)\sim \mathcal{D}} \left[\mathcal{C}(h_S(x);y) \right]$$

- The loss measures the disagreement between predictions and reality
- Since we can't directly measure $R[h_S]$ (our true cost function), we can consider optimizing its sample-average proxy, i.e., the empirical risk

ang its sample-average proxy, i.e., the
$$\hat{R}[h_S] = \frac{1}{n} \sum_{i=1}^{n} \ell(h_S(x_i); y_i)$$

ullet Our hope is that $\hat{R}[h_S]$ is close to $R[h_S]$

The generalization gap

• The gap of the true cost function from the one we have access to

$$\epsilon_{gen} = |R[h_S] - \hat{R}[h_S]|$$

- ullet Question: When is it possible to bound ϵ_{gen} by a small constant?
- The answer must depend on:
 - 1) n, the sample size
 - 2) \mathcal{H} , the hypothesis class (and its geometry)
 - 3) D, the data distribution
 - [4) the optimization algorithm that outputs our classifier]

Previously: parameter/complexity bounds

- If Floats+parametric model => n >> #params for good generalization (H.I.+Union bound over all classifiers)
- If Infinite class, then VC-dim can help in bounded the error, with not much better bound than n > 0 #params for good generalization
- Compression arguments can lead to better results for nearly sparse/low-rank models
- RC not useful when model memorizes (happens in practice)

How to make the algorithm part of the equation?

Stability of Learning Algorithms

Algorithmic Stability

- Learning algorithm A(S) is stable if: "the trained classifier does not depend too much on one data point"
- Let $S^i =$ original data set, but with z_i data point replaced by z_i'
- <u>Def:</u> Stability*

$$\mathbb{E}_{S,z_i} \left| |\operatorname{oss}(A(S); z_i) - \operatorname{loss}(A(S^i); z_i)| \right| \leq \delta$$

• Thm: (Bousquet and Elisseeff 2002) [amazing paper, please read]

 δ -stable algorithms achieve δ generalization gap

Many stability notions

Replace-one stability:

$$\mathbb{E}_{S,z_i} \left| loss(A(S); z_i) - loss(A(S^i); z_i) \right| \leq \delta$$

Hypothesis stability:

$$\mathbb{E}_{S,z}\left| \log(A(S);z) - \log(A(S^i);z) \right| \leq \delta$$

Error stability:

$$\forall S, i \; \mathbb{E}_z \left| loss(A(S); z) - loss(A(S^i); z) \right| \leq \delta$$

Uniform stability:

$$\forall S, i, z, \left| loss(A(S); z) - loss(A(S^i); z) \right| \leq \delta$$

Many stability notions

Replace-one stability:

Hypothesis stability:

$$\mathbb{E}_{S,z} \left| loss(A(S); z) - loss(A(S^i); z) \right| \le \delta$$

Error stability:

$$\forall S, i \; \mathbb{E}_z \left| loss(A(S); z) - loss(A(S^i); z) \right| \leq \delta$$

Uniform stability:

$$\forall S, i, z, \quad \left| loss(A(S); z) - loss(A(S^i); z) \right| \leq \delta$$

Many stability notions

Replace-one stability:

Hypothesis stability:

$$\mathbb{E}_{S,z} \left| loss(A(S); z) - loss(A(S^i); z) \right| \le \delta$$

Error stability:

$$\forall S, i \ \mathbb{E}_z \left| loss(A(S); z) - loss(A(S^i); z) \right| \leq \delta$$
 Downside: it's tricky to establish

Uniform stability:

$$\forall S, i, z, \quad \left| \log_S(A(S); z) - \log_S(A(S^i); z) \right| \leq \delta$$

Stability <=> Generalization

Stability = Generalization

Proof by renaming

• Let
$$S = \{z_1, ..., z_n\}, S^j = \{z_1, ..., z'_j, ...z_n\}$$

$$= \mathbb{E}_{S,A} \left[\frac{1}{n} \sum_{j=1}^{n} loss(A(S); z_j) \right] - \mathbb{E}_{S,A,z} loss(A(S); z)$$

$$= \mathbb{E}_{S,A} \left[\frac{1}{n} \sum_{j=1}^{n} loss(A(S); z_j) \right] - \mathbb{E}_{S,A,z'_j} loss(A(S); z'_j)$$

$$= \frac{1}{n} \sum_{j=1}^{n} \mathbb{E}_{S,A,z'_j} \operatorname{loss}(A(S^j); z'_j) - \mathbb{E}_{S,A,z'_j} \operatorname{loss}(A(S); z'_j)$$

$$= \mathbb{E}_{S,A,z'_j} \operatorname{loss}(A(S^j);z'_j) - \mathbb{E}_{S,A,z'_j} \operatorname{loss}(A(S);z'_j)$$

$$= \mathbb{E}_{S,A,z'_j} \left[loss(A(S^j); z'_j) - loss(A(S); z'_j) \right]$$

Stability = Generalization

Proof by renaming

• Let
$$S = \{z_1, ..., z_n\}, S^j = \{z_1, ..., z'_j, ...z_n\}$$

$$= \mathbb{E}_{S,A} \left[\frac{1}{n} \sum_{i=1}^{n} loss(A(S); z_i) \right] - \mathbb{E}_{S,A,z} loss(A(S); z)$$

Caveat: not a high probability result, but possible to prove them with a bit more work

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{S,A,z'_j} |oss(A(S');z_j) - \mathbb{E}_{S,A,z'_j} |oss(A(S);z_j)|$$

$$= \mathbb{E}_{S,A,z'_j} \operatorname{loss}(A(S^j);z'_j) - \mathbb{E}_{S,A,z'_j} \operatorname{loss}(A(S);z'_j)$$

$$= \mathbb{E}_{S,A,z'_j} \left[loss(A(S^j); z'_j) - loss(A(S); z'_j) \right]$$

Boom, Stability

Stable Algorithms generalize well

Q: Which algorithms are stable?

Example 0

• Trivial example of stable algorithm:

$$h(W; x) =$$

Example training set:

Resampled training set:

• Example training set:

Resampled training set:

Probability of difference in predictions:

$$\Pr\left(h_S(x) \neq h_{S^i}(x)\right) \leq \Pr\left(\text{a neighbor of } x \text{ is resampled}\right)$$

Example training set:

Resampled training set:

• Probability of difference in predictions:

$$\Pr\left(h_S(x) \neq h_{S^i}(x)\right) \leq \Pr\left(\text{a neighbor of } x \text{ is resampled}\right)$$

• Stability: $loss(h_S(x); y) - loss(h_{Si}(x); y) = Pr(h_S(x) \neq y) - Pr(h_{Si}(x) \neq y) =$

Example training set:

• Resampled training set:

VC-dimension of kNN is infinite, yet it generalizes!

- Probability of difference in predictions: $\Pr\left(h_S(x) \neq h_{S^i}(x)\right) \leq \Pr\left(\text{a neighbor of } x \text{ is resampled}\right)$
- Stability: $loss(h_S(x); y) loss(h_{Si}(x); y) = Pr(h_S(x) \neq y) Pr(h_{Si}(x) \neq y) =$

Before we move on: Loss functions

- The more information we have about the "loss landscape" easier the more we can say about stability/generalization AND optimization
- The "class" of the loss functions changes dramatically the guarantees one can get
- It can change things from learnable to non learnable, from poly-solvable to NP-hard
- Let's see some standard definitions

Lipschitzness & smoothness

• Lipschitz: "A function can't change too fast"

```
Def.:
```

A function f(w) is L-Lipschitz on \mathcal{W} if $|f(w) - f(w')| \le L \cdot ||w - w'||, \ \forall w, w' \in \mathcal{W}$

Lipschitzness & smoothness

• Lipschitz: "A function can't change too fast"

```
Def.:
```

A function f(w) is L-Lipschitz on \mathcal{W} if $|f(w) - f(w')| \le L \cdot ||w - w'||, \ \forall w, w' \in \mathcal{W}$

• Smooth: "A function whose gradients can't change too fast"

Def.:

A function f(w) is β -Lipschitz on \mathcal{W} if $\|\nabla f(w) - \nabla f(w')\| \leq \beta \cdot \|w - w'\|, \ \forall w, w' \in \mathcal{W}$

Lipschitzness & smoothness

• Lipschitz: "A function can't change too fast"

Def.:

A function f(w) is L-Lipschitz on \mathcal{W} if $|f(w) - f(w')| \le L \cdot ||w - w'||, \ \forall w, w' \in \mathcal{W}$

• Smooth: "A function whose gradients can't change too fast"

Def.:

A function f(w) is β -Lipschitz on \mathcal{W} if $\|\nabla f(w) - \nabla f(w')\| \leq \beta \cdot \|w - w'\|, \ \forall w, w' \in \mathcal{W}$

Also,
$$f(w) \le f(w') + \langle \nabla f(w'), w - w' \rangle + \frac{\beta}{2} ||w - w||^2$$
 (implying $f(w) \le f(w^*) + \frac{\beta}{2} ||w - w^*||^2$)

Convexity

• "A function that looks like a bowl"

Def.:

A function f(w) is convex on \mathcal{W} if $f(a \cdot w + (1-a) \cdot w') \le af(w) + (1-a)f(w')$

Convexity

"A function that looks like a bowl"

Def.:

A function f(w) is convex on \mathcal{W} if

$$f(a \cdot w + (1 - a) \cdot w') \le af(w) + (1 - a)f(w')$$

- Convexity makes our lives much easier (more on next lecture).
- Most useful property (for us)

$$\langle \nabla f(w'), w' - w^* \rangle \ge f(w') - f(w^*)$$

gradient is always positively correlated with the right direction towards OPT

Strong Convexity

"The best kind of convexity"

Def.:

A function f(w) is λ -strongly convex on $\mathcal W$ if

$$f(w) \ge f(w') + \langle \nabla f(w'), w - w' \rangle + \frac{\lambda}{2} ||w - w'||^2$$

Strong Convexity

"The best kind of convexity"

Def.:

A function f(w) is λ -strongly convex on \mathcal{W} if

$$f(w) \ge f(w') + \langle \nabla f(w'), w - w' \rangle + \frac{\lambda}{2} ||w - w'||^2$$

A way to think of this: a fnct always lower bounded by a quadratic centered at OPT, i.e.,

$$f(w) \ge f(w^*) + \frac{\lambda}{2} ||w - w^*||^2$$

Polyak Łojasiewicz (PL) functions

"The best kind of non-convex function"

Def.:

A function
$$f(w)$$
 is μ -PL on \mathcal{W} if
$$\frac{1}{2}\|\nabla f(w)\| \geq \mu \cdot (f(w) - f^*), \ \forall w \in \mathcal{W}$$

Polyak Łojasiewicz (PL) functions

"The best kind of non-convex function"

```
Def.:
```

```
A function f(w) is \mu-PL on \mathcal{W} if \frac{1}{2}\|\nabla f(w)\| \geq \mu \cdot (f(w) - f^*), \ \forall w \in \mathcal{W}
```

• If the gradient is zero, you're at a global minimum (all local minima = global min)

Polyak Łojasiewicz (PL) functions

"The best kind of non-convex function"

```
Def.:
```

A function
$$f(w)$$
 is μ -PL on \mathcal{W} if
$$\frac{1}{2}\|\nabla f(w)\| \geq \mu \cdot (f(w) - f^*), \ \forall w \in \mathcal{W}$$

Back to Stability

$$A(S) = w^* = \arg\min_{w} \left(R_S(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(w; z_i) \right)$$

$$A(S) = w^* = \arg\min_{w} \left(R_S(w) = \frac{1}{n} \sum_{i=1}^n \ell(w; z_i) \right)$$
 Assuming that $R_S(w) \ge R_S(w') + \langle \nabla R_S(w'), w - w' \rangle + \frac{\lambda}{2} ||w - w'||^2$

$$A(S) = w^* = \arg\min_{w} \left(R_S(w) = \frac{1}{n} \sum_{i=1}^n \ell(w; z_i) \right)$$

Assuming that $R_S(w) \ge R_S(w') + \langle \nabla R_S(w'), w - w' \rangle + \frac{\lambda}{2} ||w - w'||^2$

- What does str. convexity give us? Let's evaluate it at the opt

$$R_S(w) \ge R_S(w^*) + \langle \nabla R_S(w^*), w - w^* \rangle + \frac{\lambda}{2} ||w - w^*||^2$$

$$A(S) = w^* = \arg\min_{w} \left(R_S(w) = \frac{1}{n} \sum_{i=1}^n \ell(w; z_i) \right)$$
 Assuming that $R_S(w) \ge R_S(w') + \langle \nabla R_S(w'), w - w' \rangle + \frac{\lambda}{2} \|w - w'\|^2$

- What does str. convexity give us? Let's evaluate it at the opt

$$R_S(w) \ge R_S(w^*) + \langle \nabla R_S(w^*), w - w^* \rangle + \frac{\lambda}{2} ||w - w^*||^2$$

$$R_S(w) \ge R_S(w^*) + \frac{\lambda}{2} ||w - w^*||^2$$

$$A(S) = w^* = \arg\min_{w} \left(R_S(w) = \frac{1}{n} \sum_{i=1}^n \ell(w; z_i) \right)$$

- Assuming that $R_S(w) \ge R_S(w') + \langle \nabla R_S(w'), w w' \rangle + \frac{\lambda}{2} \|w w'\|^2$
- What does str. convexity give us? Let's evaluate it at the opt

$$R_S(w) \ge R_S(w^*) + \langle \nabla R_S(w^*), w - w^* \rangle + \frac{\lambda}{2} ||w - w^*||^2$$

$$R_S(w) \ge R_S(w^*) + \frac{\lambda}{2} ||w - w^*||^2$$

$$R_S(w) - R_S(w^*) \ge \frac{\lambda}{2} ||w - w^*||^2$$

We would like to get a stability bound on

$$A(S) = w^* = \arg\min_{w} \left(R_S(w) = \frac{1}{n} \sum_{i=1}^n \ell(w; z_i) \right)$$

- Assuming that $R_S(w) \ge R_S(w') + \langle \nabla R_S(w'), w w' \rangle + \frac{\lambda}{2} \|w w'\|^2$
- What does str. convexity give us? Let's evaluate it at the opt

$$R_S(w) \ge R_S(w^*) + \langle \nabla R_S(w^*), w - w^* \rangle + \frac{\lambda}{2} ||w - w^*||^2$$

$$R_S(w) \ge R_S(w^*) + \frac{\lambda}{2} ||w - w^*||^2$$

$$R_S(w) - R_S(w^*) \ge \frac{\lambda}{2} ||w - w^*||^2$$

we will use this

• Note that we can apply the str.cvx bound on both minimizers $\frac{\lambda}{2}\|w^* - w_i^*\| \le R_S(w_i^*) - R_S(w^*)$

$$\frac{\lambda}{2} \|w^* - w_i^*\| \le R_S(w_i^*) - R_S(w^*) + \frac{\lambda}{2} \|w^* - w_i^*\| \le R_{Si}(w^*) - R_{Si}(w_i^*)$$

Note that we can apply the str.cvx bound on both minimizers

$$\frac{\lambda}{2} \|w^* - w_i^*\| \le R_S(w_i^*) - R_S(w^*) + \frac{\lambda}{2} \|w^* - w_i^*\| \le R_{S^i}(w^*) - R_{S^i}(w_i^*)$$

This gives us

$$\lambda \| w^* - w_i^* \|^2 \le (R_S(w_i^*) - R_S(w^*)) + (R_{Si}(w^*) - R_{Si}(w_i^*))$$

$$\lambda \| w^* - w_i^* \|^2 \le \frac{1}{n} \left(\sum_{z \in S} \ell(w_i^*; z) - \ell(w_i^*; z) + \sum_{z \in S^i} \ell(w^*; z) - \ell(w_i^*; z) \right)$$

Note that we can apply the str.cvx bound on both minimizers

$$\frac{\lambda}{2} \|w^* - w_i^*\| \le R_S(w_i^*) - R_S(w^*) + \frac{\lambda}{2} \|w^* - w_i^*\| \le R_{S^i}(w^*) - R_{S^i}(w_i^*)$$

This gives us

$$\lambda \| w^* - w_i^* \|^2 \le (R_S(w_i^*) - R_S(w^*)) + (R_{Si}(w^*) - R_{Si}(w_i^*))$$

$$\lambda \| w^* - w_i^* \|^2 \le \frac{1}{n} \left(\sum_{z \in S} \ell(w_i^*; z) - \ell(w_i^*; z) + \sum_{z \in S^i} \ell(w^*; z) - \ell(w_i^*; z) \right)$$

Note that we can apply the str.cvx bound on both minimizers

$$\frac{\lambda}{2} \|w^* - w_i^*\| \le R_S(w_i^*) - R_S(w^*) + \frac{\lambda}{2} \|w^* - w_i^*\| \le R_{Si}(w^*) - R_{Si}(w_i^*)$$

This gives us

$$\lambda \| w^* - w_i^* \|^2 \le (R_S(w_i^*) - R_S(w^*)) + (R_{S^i}(w^*) - R_{S^i}(w_i^*))$$

$$\lambda \| w^* - w_i^* \|^2 \le \frac{1}{n} \left(\sum_{z \in S} \ell(w_i^*; z) - \ell(w_i^*; z) + \sum_{z \in S^i} \ell(w^*; z) - \ell(w_i^*; z) \right)$$

$$\lambda \| w^* - w_i^* \|^2 \le \frac{1}{n} \left(\ell(w_i^*; z_i) - \ell(w^*; z_i) + \ell(w_i^*; z_i') - \ell(w^*; z_i') \right)$$

Note that we can apply the str.cvx bound on both minimizers

$$\frac{\lambda}{2} \|w^* - w_i^*\| \le R_S(w_i^*) - R_S(w^*) + \frac{\lambda}{2} \|w^* - w_i^*\| \le R_{Si}(w^*) - R_{Si}(w_i^*)$$

This gives us

$$\lambda \| w^* - w_i^* \|^2 \le (R_S(w_i^*) - R_S(w^*)) + (R_{Si}(w^*) - R_{Si}(w_i^*))$$

$$\lambda \| w^* - w_i^* \|^2 \le \frac{1}{n} \left(\sum_{z \in S} \ell(w_i^*; z) - \ell(w_i^*; z) + \sum_{z \in S^i} \ell(w^*; z) - \ell(w_i^*; z) \right)$$

$$\lambda \| w^* - w_i^* \|^2 \le \frac{1}{n} \left(\ell(w_i^*; z_i) - \ell(w^*; z_i) + \ell(w_i^*; z_i') - \ell(w^*; z_i') \right)$$

$$\lambda \| w^* - w_i^* \|^2 \le \frac{2L}{n} \| w^* - w_i^* \| \Rightarrow \lambda \| w^* - w_i^* \| \le \frac{2L}{\lambda n}$$

Now we're almost done.

• Strong convexity and Lipschitzness imply $||w^* - w_i^*|| \le \frac{2L}{\lambda n}$

- Strong convexity and Lipschitzness imply $||w^* w_i^*|| \le \frac{2L}{\lambda n}$
- Reapplying L-Lipschitz, we obtain

$$|\mathcal{L}(w^*;z) - \mathcal{L}(w_i^*;z)| \le L||w^* - w_i^*|| \le \frac{2L^2}{\lambda n}$$

- Strong convexity and Lipschitzness imply $||w^* w_i^*|| \le \frac{2L}{\lambda n}$
- Reapplying L-Lipschitz, we obtain

$$|\mathcal{E}(w^*;z) - \mathcal{E}(w_i^*;z)| \le L||w^* - w_i^*|| \le \frac{2L^2}{\lambda n}$$

Theorem:

Let the empirical risk be a strongly convex function for all data sets, the loss be bounded and

Lipschitz. Then,
$$A(S) = \arg\min_{w} \hat{L}_{S}(w)$$
 is a $\frac{2L^{2}}{\lambda n}$ -stable learning algorithm

Strong convexity and Lips Whatsisnstrongly convex?

• Reapplying L-Lipschitz, we obtain

$$|\ell(w^*;z) - \ell(w_i^*;z)| \le L||w^* - w_i^*|| \le \frac{2L^2}{\lambda n}$$

Theorem:

Let the empirical risk be a strongly convex function for all data sets, the loss be bounded and

Lipschitz. Then,
$$A(S) = \arg\min_{w} \hat{L}_{S}(w)$$
 is a $\frac{2L^{2}}{\lambda n}$ -stable learning algorithm

- Strong convexity and Lips Whatsisnstrongly convexity?
- ullet Reapplying L-Lipschitz, we obtain

any convex loss that has a $\lambda \|w\|^2$ penalty (eg.), regularized least squres/logistic regression etc)!

Theorem:

Let the empirical risk be a strongly convex function for all data sets, the loss be bounded and

Lipschitz. Then,
$$A(S) = \arg\min_{w} \hat{L}_{S}(w)$$
 is a $\frac{2L^{2}}{\lambda n}$ -stable learning algorithm

• An empirical loss function is μ -PL if

$$\left\| \nabla \frac{1}{n} \sum_{i} \mathcal{E}(w; z_i) \right\|^2 \ge \mu \|w - w^*\|$$

• An empirical loss function is μ -PL if

$$\left\| \nabla \frac{1}{n} \sum_{i} \ell(w; z_i) \right\|^2 \ge \mu \|w - w^*\|$$

$$|\ell(w^*; z) - \ell(w_i^*; z)| \le L||w^* - w_i^*||$$

• An empirical loss function is μ -PL if

$$\left\| \nabla \frac{1}{n} \sum_{i} \mathcal{E}(w; z_i) \right\|^2 \ge \mu \|w - w^*\|$$

$$|\mathcal{C}(w^*;z) - \mathcal{C}(w_i^*;z)| \le L||w^* - w_i^*||$$

$$\le \frac{L}{\mu} \left\| \nabla \frac{1}{n} \sum_{z \in S} \mathcal{C}(w_i^*;z) \right\|^2$$

• An empirical loss function is μ -PL if

$$\left\| \nabla \frac{1}{n} \sum_{i} \mathcal{E}(w; z_i) \right\|^2 \ge \mu \|w - w^*\|$$

$$|\mathcal{C}(w^*; z) - \mathcal{C}(w_i^*; z)| \le L||w^* - w_i^*||$$

$$\le \frac{L}{\mu} \left\| \nabla \frac{1}{n} \sum_{z \in S} \mathcal{C}(w_i^*; z) \right\|^2$$

$$\le \frac{L}{\mu} \left\| \nabla \frac{1}{n} \mathcal{C}(w_i^*; z_i) \right\|^2$$

• An empirical loss function is μ -PL if

$$\left\| \nabla \frac{1}{n} \sum_{i} \mathcal{E}(w; z_i) \right\|^2 \ge \mu \|w - w^*\|$$

$$\begin{aligned} |\mathcal{C}(w^*; z) - \mathcal{C}(w_i^*; z)| &\leq L \|w^* - w_i^*\| \\ &\leq \frac{L}{\mu} \left\| \nabla \frac{1}{n} \sum_{z \in S} \mathcal{C}(w_i^*; z) \right\|^2 \\ &\leq \frac{L}{\mu} \left\| \nabla \frac{1}{n} \mathcal{C}(w_i^*; z_i) \right\|^2 \\ &\leq \frac{L}{\mu n} \left\| \nabla \mathcal{C}(w_i^*; z_i) \right\|^2 \end{aligned}$$

• An empirical loss function is μ -PL if

$$\left\| \nabla \frac{1}{n} \sum_{i} \ell(w; z_i) \right\|^2 \ge \mu \|w - w^*\|$$

Theorem:

Let the empirical risk be PL+Lipschitz+bounded gradients by.

Then,
$$A(S) = \arg\min_{w} \hat{L}_{S}(w)$$
 is a $\frac{2LD^{2}}{\mu n}$ -stable learning algorithm

Theorem:

Let the empirical risk be PL+Lipschitz+bounded gradients by.

Then,
$$A(S) = \arg\min_{w} \hat{L}_{S}(w)$$
 is a $\frac{2LD^{2}}{\mu n}$ -stable learning algorithm

Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path?

Samet Oymak* and Mahdi Soltanolkotabi[†]

Loss landscapes and optimization in over-parameterized non-linear systems and neural networks

Chaoyue Liu^a, Libin Zhu^{b,c}, and Mikhail Belkin^c

^aDepartment of Computer Science and Engineering, The Ohio State University
^bDepartment of Computer Science and Engineering, University of California, San Diego
^cHalicioğlu Data Science Institute, University of California, San Diego

May 28, 2021

On the Convergence Rate of Training Recurrent Neural Networks

Zeyuan Allen-Zhu zeyuan@csail.mit.edu Microsoft Research AI

Yuanzhi Li
yuanzhil@stanford.edu
Stanford University
Princeton University

Zhao Song

zhaos@utexas.edu

UT-Austin

University of Washington

Harvard University

October 28, 2018

A Convergence Theory for Deep Learning via Over-Parameterization

Zeyuan Allen-Zhu

zeyuan@csail.mit.edu

Microsoft Research AI

Yuanzhi Li
yuanzhil@stanford.edu
Stanford University
Princeton University

Zhao Song
zhaos@utexas.edu
UT-Austin
University of Washington
Harvard University

Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path?

Samet Oymak* and Mahdi Soltanolkotabi[†]

Loss landscapes and optimization in over-parameterized non-linear systems and neural networks

Chaoyue Liu^a, Libin Zhu^{b,c}, and Mikhail Belkin^c

^aDepartment of Computer Science and Engineering, The Ohio State University ^bDepartment of Computer Science and Engineering, University of California, San Diego ^cHalicioğlu Data Science Institute, University of California, San Diego

May 28, 2021

On the Convergence Rate of Training Recurrent Neural Networks

Zeyuan Allen-Zhu zeyuan@csail.mit.edu Microsoft Research AI

Yuanzhi Li yuanzhil@stanford.edu Stanford University Princeton University

Zhao Song zhaos@utexas.edu UT-Austin University of Washington

PL-like conditions hold in heighborhoods around initialization/optima.

zeyuan@csail.mit.edu

(a) Loss landscape of under-parameterized models

(b) Loss landscape of over-parameterized models

Vetworks

ıs.edu

Figure 1: Panel (a): Loss landscape is locally convex at local minima. Panel (b): Loss landscape incompatible with local convexity as the set of global minima is not locally linear.

Princeton University

University or washington

PL-like conditions hold in heighborhoods around initialization/optima.

zeyuan@csail.mit.edu

Wrapping-up Generalization

Other Avenues to Generlization: PAC-Bayes bounds

ullet The training algorithm as a sampling distribution on ${\mathcal H}$

Theorem:

Let P be a prior distribution on \mathscr{H} . Let Q be the 'trained' distribution for sampling a classifier. Then

$$\epsilon_{gen}[q] \le O\left(\sqrt{\frac{\mathsf{KL}(Q||P)}{2m}}\right)$$

Other Avenues to Generlization: Information Theoretic Bounds

ullet The training algorithm as a sampling distribution on ${\mathcal H}$

Theorem (information):

Let A(S) be a randomized learning algorithm. Then,

$$\epsilon_{gen}[A] \le O\left(\sqrt{\frac{I(A(S);S)}{n}}\right)$$

- Algorithms that "leak" little information generalize better!
- Relates to stability/differential privacy

Wrapping up

- Generalization bounds = saying it will work without running it
- VC dim bounds ≈ naive parameter count bounds
- Parameter count bounds can get fancy with compression arguments
- Rademacher complexity doesn't always give interesting bounds in practice
- Stability begets generalization! Many interesting minimizers are stable

- Open Qs:
 - Are optimization algorithms like SGD stable?
 - Stability and loss geometry not well understood
 - Connections to implicit regularization?
 - Can we certify stability with limited access to data?
 - Combine with compression arguments?

Wrapping up

- Generalization bounds = saying it will work without running it
- VC dim bounds ≈ naive parameter count bounds
- Parameter count bounds can get fancy with compression arguments
- Rademacher complexity doesn't always give interesting bounds in practice
- Stability begets generalization! Many interesting minimizers are stable

- Open Qs:
 - Are optimization algorithms like SGD stable?
 - Stability and loss geometry not well understood
 - · Connect Why do memorizing neural networks generalize?
 - Can we certify stability with limited access to data?
 - Combine with compression arguments?

Next Time: OPT Algorithms

Forget about the Why's, let's talk about the How's

reading list

Bousquet, Olivier, and André Elisseeff. "Stability and generalization." The Journal of Machine Learning Research 2 (2002): 499-526. https://www.jmlr.org/papers/volume2/bousquet02a/bousquet02a.pdf

(Stability Chapter) Understanding Machine Learning: From Theory to Algorithms, https://www.cs.huji.ac.il/w~shais/UnderstandingMachineLearning/copy.html

Hardt, M., Recht, B. and Singer, Y., 2016, June. Train faster, generalize better: Stability of stochastic gradient descent. In International conference on machine learning (pp. 1225-1234). PMLR. Vancouver, http://proceedings.mlr.press/v48/hardt16.pdf

Xu, A. and Raginsky, M., 2017. Information-theoretic analysis of generalization capability of learning algorithms. Advances in Neural Information Processing Systems, 30.

https://proceedings.neurips.cc/paper/2017/file/ad71c82b22f4f65b9398f76d8be4c615-Paper.pdf

McAllester, D.A., 1999, July. PAC-Bayesian model averaging. In Proceedings of the twelfth annual conference on Computational learning theory (pp. 164-170). https://home.ttic.edu/~dmcallester/pac99.ps

Dziugaite, G.K. and Roy, D.M., 2017. Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data. arXiv preprint arXiv:1703.11008. https://arxiv.org/pdf/1703.11008

Charles, Z. and Papailiopoulos, D., 2018, July. Stability and generalization of learning algorithms that converge to global optima. In International conference on machine learning (pp. 745-754). PMLR. http://proceedings.mlr.press/v80/charles18a/charles18a.pdf