FCEB26 Lecture 2.

Concentration of the Empirical Risk
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Today: Why/when does ERM work




Contents

e How to show concentration for ERM
e Parameter count bounds
e VVC dim and Rademacher Complexity

* Do these bounds explain generalization iIn modern ML?




Reminder

* WWhat we have: Labeled examples presented as (features, label)

(-Xia yl) ~ @

e A fixed hypothesis class (aka type of predictor) # (linear classifier; SVM,
neural network, decision tree, etc)



Reminder

* WWhat we have: Labeled examples presented as (features, label)

(-Xia yl) ~ @

e A fixed hypothesis class (aka type of predictor) # (linear classifier; SVM,
neural network, decision tree, etc)

e Goal:We want to find the best i € # for a given distribution & and
loss function. How! ERM
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min — Z £(h(x); )
e/ N
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performance of model /1 € # on data point x.

* Sidenote: lypically data set Is split In three parts, [train|validation|test]
* |)We use trainset to find models; 2) Performance evaluated on val set.
3) We pick one and report its performance on the test set.

e Please google: cross validation/hold out set/check literature on intro to stat.
learning theory
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Main Question for today

* When Is the empirical risk a good estimator for the true risk

[E(x,y)NQZ [f(h(x)a y)]

e .. when does the loss of the ERMinimizer concentrate

e [oday: How does the choice of the model affect the “worst case”
concentration of the loss of the empirical risk?




Some Definrtions

e [here Is an unknown distribution & over labeled examples from
A X Y (i.e.,feature x label space)

* We recelve a 'sample’” data set of n 1.1.d. examples
S — {(xla yl)a R (xna yn)}

* For notation simplicity we may sometime use

Zi — (X,y)



Some Definrtions

e Our goal is to find a hypothesis (classifier) h¢ with small expected risk
R[hS] — [E(x,y)NQZ [Z/ﬂ(hS(x)ay)]

* [he loss measures the disagreement between predictions and reality



Some Definrtions

e Our goal is to find a hypothesis (classifier) h¢ with small expected risk
R[hS] — [E(x,y)NQZ [f(hS(x)ay)]

* [he loss measures the disagreement between predictions and reality

e Since we can't directly measure R[h¢| (our true cost function), we can
consider optimizing Its sample -average proxy, .e., the empirical risk

Rlhg] = Z £ (hg(x,): y,)

e Our hope is that R[hS] s close to R[hS]
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* [he gap of the true cost function from the one we have access to

€gen = | Rlg] — Rhg] |

o Question:When is it possible to bound €,,, by a small constant!
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I he generalization gap

* [he gap of the true cost function from the one we have access to

€gen = | Rlg] — Rhg] |

o Question:When is it possible to bound €,,, by a small constant!

en

* [he answer must depend on:
) n, the sample size
2) # ,the sample size

3) &), the data distribution
4) the optimization algorithm that outputs our classifier]




Vanilla Union Bound Results
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A first step towards concentration

e Assumption: Let the loss be bounded
0<Z(h(x),y) <1

* | ets use Hoeffing's Inequality (H.l.) to prove concentration

A 1 <
Theorem: Let X, ..., X, € R be independent RVs, such that 0 < X: < 1. Also let, X, = — Z X.
n

i=1
Then, foralle > 0

Va\ Va\

Pr( X —E{X) ze) < 2. e

n n

2

* [he above Is true Irrespective of the distribution of the RVs



SImple application of H.|
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SImple application of H.|

A 1 ¢
Theorem: Let X, ..., X, € R be independent RVs, such that 0 < X, < 1. Also let, X, = — 2 X
n
i=1

Then, foralle > 0

n n

Pr( X —E{X} ze) <D .e2me

e Q:How many samples n do we need to guarantee )A(n = E)A(n + ¢ with
brobability 1 — 0!

0
5 =22 = log (—) = — 2ne?

2

5 1
) log (5) . log (3>
TNET T T T a

“Error’ scales like \/I/n



SImple application of H.|

A 1 ¢
Theorem: Let X, ..., X, € R be independent RVs, such that 0 < X, < 1. Also let, X, = — Z X
n
i=1

Then, foralle > 0

A\ A\

Pr( X —E{X) ze) < 2.2

n n

e Q:How many samples n do we need to guarantee )A(n = E)A(n + € with
probability 1 — 0!

Powerful statements like this tend to be very restrictive!
H.l. 1s after all 1s oblivious to the distribution of RVs



Let's try H.I on the empirical risk

e Assume that our predictor A(; ) is fixed, and does not depend on the
training data (what?!)

e let X; = £(h(x;); ;). (observe that X:s are independent)
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Let's try H.I on the empirical risk

e Assume that our predictor A(; ) is fixed, and does not depend on the
training data (what?!)

Nol!l ' The result only applies to a single &

Corollary:

1

For any given (fixed) classifier i the empirical risk “converges” to the true risk with rate ~
n
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e What we need: Results for at least a family # of predictors
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H.l on an entire family of classitiers

e What we need: Results for at least a family # of predictors

Say we are given a finite set of predictors # (thi

Then, we can bo

U

union bound anc

Let £, be the event that & has generalization error more than

Then,

* [he above says.

ple

the “worst-case” generalizat

(Ur):
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< ‘%‘ ) 26—21162

Pr (zrée};;egen[ho < Pr( U {Ggen[h] < 6}) < || -gg};;Pr (6 [ /]
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s, using the

[h] = |R[h] = R[h]| > €.

CRYTHING in the & bag generalizes well. How big can this bag be?



H.l on an entire family of classifiers

o HI + UB can handle families of up to size |# | = O (2”62'5)

e [hat doesnt sound too bad!

* VWhat about hypothesis classes that actually “learn™ stuft! (e.g., linear
classifiers, NN, etc?)
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Example | Linear Classifiers with finite precision

e Let us consider the following binary classifier y = sign(w’x — b) , where
x € R?
e | et us also consider that w, b are floats (32 bits/variable)

Corollary:
For the set of all linear classifiers we have €,,, = | R[hg] — R[hS] | = (\/d/n), with probability

1—5,andany0<5<1




txample |: Linear Classifiers with finrte precision

e Let us consider the following binary classifier y = sign(w’x — b) , where
x € R?
e | et us also consider that w, b are floats (32 bits/variable)

Corollary:

For the set of all linear classifiers we have €,,, = = | R[h¢] — R[hS] | = (\/d/n), with probability
1—5,and any 0 <o < 1




Example 2: Fully Connected RelLlU network with floats

e | et us consider the following binary classifier y = sign(h(w; x)) , where
x € RY where w is the set of all welghts
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Example 2: Fully Connected RelLlU network with floats

e | et us consider the following binary classifier y = sign(h(w; x)) , where

x € R where w is the set of all weights
e assume they are floats (32 bit each)

Corollary:
For the set of all finite precision NN classifiers with d weights, we have

€gen = | R[hg] — IAQ[hS] | =0 (\/d/ﬂ),vvith probability 1 —d,andany 0 < o < 1




xample 2.1: LeNet> on ImageNet

Reminder:
Corollary:
For any parametric model with d parameters of finite precision, we have

€gen = | R[hg] — IAQ[hS] | =0 (\/d/n),vvith probability 1 —0,andany 0 < 0 < 1

[ eNet5 has ~60K parameters
*|mageNet has ~ 1.2 million images

vVdin =~ 0.22

*assumes Imagenet samples are 11d (they are not)



xample 2.1: LeNet> on ImageNet

Reminder:
Corollary:
For any parametric model with d parameters of finite precision, we have

€gen = | R[hg] — ﬁ[hS] | =0 (\/d/ﬂ),with probability 1 — 9,and any 0 < 6 < 1

[ eNet5 has ~60K parameters
*|mageNet has ~ 1.2 million images

vVdin =~ 0.22




xample 2.2: ResNet>0 on ImageNet

Reminder:
Corollary:
For any parametric model with d parameters of finite precision, we have

€gen = | R[hg] — IAQ[hS] | =0 (\/d/n),vvith probability 1 —0,andany 0 < 0 < 1

*ResNet 50 has ~23 million parameters
*|mageNet has ~ 1.2 million images

\din > > 1



xample 2.2: ResNet>0 on ImageNet

Reminder:
Corollary:
For any parametric model with d parameters of finite precision, we have

€gen = | R[hg] — ﬁ[hS] | =0 (\/d/n),with probability 1 — 9,and any 0 < 6 < 1

*ResNet 50 has ~23 million parameters
*|mageNet has ~ 1.2 million images
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e |f Floats+parametric model => n > #params for generalization



S0 far, only finrte classes

e |f Floats+parametric model => n > #params for generalization

e [raditional theory for generalization bounds tries to handle infinite
classes.
e VC-dimension, fat-shattering dimension, rademacher complexity, etc

e Can these more elaborate approaches result in interesting sen bounds
for real models/data’



Measuring Complexity




VWhich one Is more complex!
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Bounding generalization via complexity measure

e (General Idea:

Bounding the expressiveness of a model => bounding the number of bits needed to describe it
=> bounding the generalization gap.

In other words, the less expressive/complex a class, the less surprises we'll have at test time.



Bounding generalization via complexity measure

e (General Idea:

Bounding the expressiveness of a model => bounding the number of bits needed to describe it
=> bounding the generalization gap.

In other words, the less expressive/complex a class, the less surprises we'll have at test time.

e Standard techniques:VC dimension and Rademacher Complexity

e Q: How do they work, what types of bounds do they imply?
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Definition:
The VC-dimension of Z is the largest number d such that there exist a set § of d samples that is
shattered by a classifier h € &, i.e., for any labels yy, ..., y, of §, h(x;) = y; forall x; € §
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VC dimension

e VVC dimension = measures expressiveness of a hypothesis class

Definition:
The VC-dimension of Z is the largest number d such that there exist a set § of d samples that is
shattered by a classifier h € &, i.e., for any labels yy, ..., y, of §, h(x;) = y; forall x; € §

e F.o, largest set of Images that a classifier can give any set of labels.

e Similar to memorization, but not quirte.

e Q:how doesVC connect with generalization error?



VC dimension

e \/C dimension can handle infinite classes
Theorem:

For any €,0 > 0, suppose that VCdim(#') = d, and we draw a sample § of size

C
n>— (dlog(l/e) + log(l/é)
c2

then with probability at least 1 — o, we have that maxe,, [h] < €
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VC dimension

e \/C dimension can handle infinite classes

Theorem:
For any €,0 > 0, suppose that VCdim(#') = d, and we draw a sample § of size

C
n>— (dlog(l/e) + 10g(1/5)
c2

[h] L€

then with probability at least 1 — o, we have that max e
hex

gen




VC dimension

e VC dimension = measure of expressiveness of a hypothesis class

Definition:
The VC-dimension of # is the largest number d such that there exist a set § of d samples that is
shattered by a classifier h € &, i.e,if yy, ..., y, are the labels of §, then h(x;) = y; forall (x;,y,) € §




VC dimension

e VC dimension = measure of expressiveness of a hypothesis class

Definrtion:

The VC-dimension of # is the largest number d such that there exist a set § of d samples that is
shattered by a classifier h € &, i.e,if yy, ..., y, are the labels of §, then h(x;) = y; forall (x;,y,) € §

-Xamples:

o H = {h\h(x) = sign(w’x — b)} VCO(H) =d+ 1

o /= neural nets with thresholds and d parameters, VC(#) = O(d log d)
o # = RelLLU NNs with d parameters and depth D VC(#) = O(dD log d)




VC dimension

e VC dimension = measure of expressiveness of a hypothesis class

Definrtion:

The VC-dimension of # is the largest number d such that there exist a set § of d samples that is
shattered by a classifier h € &, i.e,if yy, ..., y, are the labels of §, then h(x;) = y; forall (x;,y,) € §

-Xamples:

o H = {h\h(x) = sign(w’x — b)} VCO(H) =d+ 1

o /= neural nets with thresholds and d parameters, VC(#) = O(d log d)
o # = RelLLU NNs with d parameters and depth D VC(#) = O(dD log d)

*For NINs it seems that VC dimension > #params..VWorse generalization than parameter count
on FP networks. ..




VC dimension

e VC dimension = measure of expressiveness of a hypothesis class

Definition:
The VC-dimension of Z is the largest number d such that there exist a set § of d samples that is
shattered by a classifier h € &, i.e,if yy, ..., y, are the labels of §, then h(x;) = y; forall (x;,y,) € §

-xamples:

o H = 1{h|hx) = sieniw!x=b)\. VO(FH) = d + 1




Conclusion

e Concentration of the ERM implies generalization
e Algorithm/Data agnostic generalization bounds are... tricky

e Next: Can we refine these bounds!?



