Serially Equivalent + Scalable
Parallel Machine Learning
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Serial Equivalence

Beyond Hogwild

ow much asynchrony is possible?

Open Problems
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Aserial(sa 7T) — Aparallel(sa 7T)

For all Data sets S
For all data order W (data points can be arbitrarily repeated)

Main advantage:
- we only need to “prove” speedups

- Convergence proofs inherited directly from serial

Main Issue:
- Serial equivalence too strict
- Cannot guarantee any speedups In the general case




The Stochastic Updates

Meta-algorithm




Stochastic Updates

F=—————— -
Algorithm 1 Stochastic Updates pseudo-algorithm | /I X1 :
1. Input: x; f1,..., fn; w1,...,un; D; T : U1 —/_.C@I
2: fort=1:Tdo | 2 _—
3:  samplei~D | :
4. xs, = ui(xs,, fi) //update global model on §; : U, I
5. Output: x , T :

VWhat does this solve!




Stochastic Updates: A family of ML Algorithms

Many algorithms with

Data points Variables
sparse access patterns:

- SGD |
- SVRG / SAGA 2
- Matrix Factorization
- word2vec
- K-means
- Stochastic PCA N

- Graph Clustering

Can we parallelize under Serial Equivalence!?




A graph view of Conflicts

in Parallel Updates




The Update Conflict Graph

conflict graph
f1 J2

fn

An edge between 2 updates If they overlap



The Theorem

conflict graph [Krivelevich’ | 4]
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Lemma: n
Sample less than P < (1 — e)— vertices (with/without replacement)
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The Theorem

conflict graph [Krivelevich’ | 4]

fi P
\
e fn

lemma:

n
Sample less than P < (1 — G)A— vertices (with/without replacement)
G

Then, the induced sub-graph shatters



The Theorem

conflict graph [Krivelevich’ | 4]
fi f2
d —
: ©
Lemma:

n
Sample less than P < (1 — e)— vertices (with/without replacement)

Ag

Then, the induced sub-graph shatters,
The largest connected component has size

logn
(&)

Even if the Graph was a Single Huge Conflict Component!




Building a Parallelization Framework

out of a Single Theorem




Sample Batch + Connected Components
conflict graph
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Sample Batch + Connected Components
conflict graph

ML

Sample B=(1—¢)- % vertices



Sample Batch + Connected Components

conflict graph
f1 f2 fl f2
Phase | Pm— \
7 ©

In

Sample B=(1—¢)- % vertices
Compute Conn. Components

NOTE: No conflicts across groups!

Max Conn. Comp = logn => n/(Alogn) tiny components

Yay! Good for parallelization

No conflicts across groups = we can run Stochastic Updates on each of them in parallel!




Sample Batch + Connected Components
conflict graph

Ut

Allocation

U U= L

Corel Core 2 Core p

Cores < Batch size / logn = n/(Alogn)



Sample Batch + Connected Components
conflict graph

Ut

Allocation
Phase || (= @
be) \@) Ly
Corel Core 2 Core p

Cores < Batch size / logn = n/(Alogn)

A Single Rule: Run the updates serially inside each connected component

Automatically Satisfied since we give each conflict group to a single core.



Phase |

Phase |l

Sample Batch + Connected Components
conflict graph

E@W"‘\é

\@_@) @ Alloca’uoi 3 \&@}
Core! Core 2 Core p

Policy |: Random allocation, good when cores << Batch size

Policy II: Greedy min-weight allocation
(80% as good as optimal (which is NP-hard))

A Single Rule: Run the updates serially inside each connected component

Automatically Satisfied since we give each conflict group to a single core.
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Phase |l

Phase llI

Sample Batch + Connected Components
conflict graph
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Asynchronous and Lock-free Stochastic Updates

Lo

Corel Core 2 Core p




Sample Batch + Connected Components
conflict graph
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Corel Core 2 Core p

-

Asynchronous and Lock-free Stochastic Updates

-

Corel Core 2 Core p

Each core runs Asynchronously and Lock-free! (No communication!)
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Phase |l

Phase llI

Sample Batch + Connected Components
conflict graph
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Asynchronous and Lock-free Stochastic Updates

Lo

Corel Core 2 Core p

No memory Contention!

Not during Reads, neither during Wrrites!
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Sample Batch + Connected Components
conflict graph
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Asynchronous and Lock-free Stochastic Updates

Lo

Corel Core 2 Core p

Wait for Everyone to Finish




Phase |

Phase |l

Phase llI

v

Sample Batch + Connected Components
conflict graph

f@ww

\@_@) @ Alloca’uoi 3 \&@)
Core! Core 2 Core p

-

Asynchronous and Lock-free Stochastic Updates

Lo

Corel Core 2 Core p

Wait for Everyone to Finish




Algorithm 2 CYCLADES

: Input: G, T, B.

. Sample n, = T/ B subgraphs G,,, ..., Gy° from G,

: Cores compute in parallel CCs for sampled subgraphs
. for batch?=1:n; do

Allocation of C, .. Cﬁnz to P cores

for each core in parallel do
for each allocated component C do
for each update j (in order) from C do

XS; = ’Uzj(XSj,fj)

N N AN R AR A > v

—
-

: Output: x




This suarantees Serially Equivalence

But does It guarantee speedups!




Sample Batch + Connected Components

conflict graph
fi f2
Phase | /%/ » g
Allocation
Phase || ‘@@ ’ ‘O@’ ‘ @@’
Corel Core 2 Core p

Phase llI

This Is as fast as It gets




hase | and Il are fast
We are good.

This s as fast as It gets




71 1
:u1 §—:a¢;|
| Y2 | Note:
1 : Serial Cost = Fy, - K
: Un $d| K = cost / coordinate update
L |

Theorem 4. Let us assume any given update-variable graph G, with average, and max left degree A and Ar, such
that %—i < /n, and with induced max conflict degree A. Then, CYCLADES on P = O(ﬁh) cores, with batch sizes

B = (1 —€) x can execute T' = c - n updates, for any constant c > 1, selected uniformly at random with replacement,

in time 5 p
(’)( z})/‘é.logzn) » Speedup: _ -

log? n

with high probability.

Assumptions:

1) Not too large max degree (approximate “regularrty”)
2) Not too many cores

3) Sampling according to the “Graph Theorem”



MW |dentical performance as serial for

- SGD
- SVRG / SAGA
- Sparse Network training
- Matrix Factorization
- Word2Vec
- Matrix Completion
e Il - - Greedy Clustering

Phase |l




Fast Connected Components




Fast Connected Components

conflict graph

©

If you have the conflict graph CC is easy... O(Sampled Edges)

Building the conflict graph requires n*2 time...

No, thanks.




Fast Connected Components

f

left vertices

Sample n/A f2 /:
4>

fn\

Sample on the Bipartite, not on the Conflict Graphs



Fast Connected Components

Simple Message passing Idea
-Gradients send their IDs
-Coordinates Compute Min and Send Back
-Gradients Compute Min and Send Back
terate till you're done
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Simple Message passing Idea
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Fast Connected Components

Ce i

Simple Message passing Idea
-Gradients send their IDs
-Coordinates Compute Min and Send Back
-Gradients Compute Min and Send Back
terate till you're done




Fast Connected Components

Ce i

Cost = O( By I;gQ = )

Same assumptions as main theorem



Proof of "The Theorem”




The Theorem

| emma:

Activate each vertex with probability
p=(l-g)/A

Then, the induced subgraph shatters,

and the largest connected component has size

4 1
—_ e O n
€2 &
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Probabillistic DFS




DFS with random coins

vX6

gorithm:
~lip a coin for each vertex DFS wants to visit
f 1 wvisit, if O don't visit and delete with its edges
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DFS with random coins
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gorithm:
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DFS with random coins

X4=0

gorithm:
~lip a coin for each vertex DFS wants to visit
f 1 wvisit, if O don't visit and delete with its edges




DFS with random coins
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DFS with random coins

X4=0

gorithm:
~lip a coin for each vertex DFS wants to visit
f 1 wvisit, if O don't visit and delete with its edges




DFS with random coins

--------

A Little extra trickery to turn this statement

to a with or without replacement Theorem.

- Say |
- #random coins Tlipped associated to that component <= k *A
- Since | have a size k component it means that | had the event
“at least k coins are “ON"" In a set of k * A coins”

62(1—6)

62
(n —kd+ 1)Pr[B(kd,p) > k] <n-e 5079k < p.e7 3 a2




s Max.Degree really an issue?




ish Degree Vertices
(outliers)

Say we have a graph with a low-degree component
+ some high degree vertices



ish Degree Vertices
(outliers)

1550 3

Lemma: n

If you sample uniformly less than £ = (1 - G)A_G vertices
Then, the induced subgraph of the low-degree (!) part
shatters, and the largest connected component has size (whp)

4
o logn

A G is the max degree Is the low-degree subgraph




ish Degree Vertices
(outliers)

‘_v

Lemma 7. Let us assume that there are O(n°) outlier vertices in the original conflict graph G with degree at most
A,, and let the remaining vertices have degree (induced on the remaining graph) at most A. Let the induced update-
variable graph on these low degree vertices abide to the same graph assumptions as those of Theorem 4. Moreover, let

the batch size be bounded as 5 1-5
B §min{(1—e)—n_i(n ), 0, (nP )}

Then, the expected runtime of CYCLADES will be O (£%% -log®n) .




Experiments




Experiments

Implementation in C++
Experiments on Intel Xeon CPU E/-8870 v3

| TB RAM
Density (average
Dataset # datapoints | # features | number of features
per datapoint)

SAGA NH2010 48,838 48,838 4.8026

SVRG DBLP 5,425,964 5,425,964 3.1880
L2-5GD MovieLens ~10M 82,250 200
EN-Wiki 20,207,156 213,272 200

Full asynchronous (Hogwild!)

VS
CYCLADES



Speedups
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Convergence

Least Squares SAGA
| 6 threads
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Open Problems

Assumptions: Sparsity is Key

QO.P:
Can we handle Dense Data!

O.P:

Data sparsification
for f(<ax>) problems!?

maybe...
We can relax serial equivalence to an “expected’” one!




Open Problems

Asynchronous algorithms great for Shared Memory Systems

: I/
- Issues when scaling across nodes

A

. awr 00
#threads
OFR: o
How to provably scale on NUMA? i

- Similar Issues for Distributed: OF:
What is the right ML Paradigm

speedup

for Distributed?



CYCLADES

B O T AT o . iy i A
N T ki “:'-" R 6. (T
FE DY T SN S g
v

a framework for Parallel Sparse ML algorithms

Lock-free + (maximally) Asynchronous
No Conflicts
Serializable

Black-box analysis




Next [ ime

- Communication Bottlenecks
- Compressed Gradients

- Quantization
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