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Today
Serial Equialence

Aserial(S,⇡) = Aparallel(S,⇡)

For all Data sets S
For all data order π (data points can be arbitrarily repeated)

Main Issue:
- Serial equivalence too strict

- Cannot guarantee any speedups in the general case

Main advantage:
- we only need to “prove” speedups

- Convergence proofs inherited directly from serial
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Stochastic Updates

core. Given enough problem sparsity, CYCLADES guarantees a nearly linear speedup, while inheriting all
the qualitative properties of the serial counterpart of the algorithm, e.g., proofs for rates of convergence.
Enforcing a serially equivalent execution in CYCLADES comes with additional practical benefits. Serial
equivalence is helpful for hyperparameter tuning, or locating the best model produced by the asynchronous
execution, since experiments are reproducible, and solutions are easily verifiable. Moreover, a CYCLADES
program is easy to debug, because bugs are repeatable and we can examine the step-wise execution to
localize them.

A significant benefit of the update partitioning in CYCLADES is that it induces considerable access local-
ity compared to the more unstructured nature of the memory accesses during HOGWILD!. Cores will access
the same data points and read/write the same subset of model variables. This has the additional benefit of
reducing false sharing across cores. Because of these gains, CYCLADES can actually outperform HOGWILD!
in practice on sufficiently sparse problems, despite appearing to require more computational overhead. Re-
markably, because of the added locality, even a single threaded implementation of CYCLADES can actually
be faster than serial SGD. In our SGD experiments for matrix completion and word embedding problems,
CYCLADES can offer a speedup gain of up to 40% compared to that of HOGWILD!. Furthermore, for vari-
ance reduction techniques such as SAGA [DBLJ14] and SVRG [JZ13], CYCLADES yields better accuracy and
more significant speedups, with up to 5⇥ performance gains over HOGWILD!-type implementations.

The remainder of our paper is organized as follows. Section 2 establishes some preliminaries. Details
and theory of CYCLADES are presented in Section 3. We present our experiments in Section 4, we discuss
related work in Section 5, and then conclude with Section 6.

2 The Algorithmic Family of Stochastic-Updates
We study parallel asynchronous iterative algorithms on the computational model used by [NRRW11], and
similar to the partially asynchronous model of [BT89]: a number of cores have access to the same shared
memory, and each of them can read and update components of x in parallel from the shared memory.

In this work, we consider a large family of randomized algorithms that we will refer to as Stochastic
Updates (SU). The main algorithmic component of SU focuses on updating small subsets of a model variable
x, that lives in shared memory, according to prefixed access patterns, as sketched by Alg. 1.

Algorithm 1 Stochastic Updates pseudo-algorithm
1: Input: x; f1, . . . , fn; u1, . . . , un; D; T .
2: for t = 1 : T do
3: sample i ⇠ D

4: xSi = ui(xSi , fi) //update global model on Si

5: Output: x

In Alg. 1 each set Si is a subset of the coordinate
indices of x, each function fi only operates on the
subset Si of coordinates (i.e., both its domain and
co-domain are inside Si), and ui is a local update
function that computes a vector with support on Si

using as input xSi and fi. Moreover, T is the total
number of iterations, and D is the distribution with
support {1, . . . , n} from which we draw i. As we
explain in Appendix A, several machine learning
and optimization algorithms belong to the SU algorithmic family, such as stochastic gradient descent (SGD),
with or without weight decay and regularization, variance-reduced learning algorithms like SAGA and
SVRG, and even some combinatorial graph algorithms.

The Updates Conflict Graph A useful construction for our developments is the conflict graph between
updates, which can be generated from the bipartite graph between the updates and the model variables.
We define these graphs below, and provide an illustrative sketch in Fig. 1.

Definition 1. We denote as Gu the bipartite update-variable graph between the updates u1, . . . , un and the d model
variables. In Gu an update ui is linked to a variable xj , if ui requires to read or write xj . We let Eu denote the number
of edges in the bipartite graph, and also denote as �L the left max vertex degree of Gu, and as �L its average left
degree.
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What does this solve?

Definition 2. We denote by Gc a conflict graph on n vertices, each corresponding to an update ui. Two vertices of
Gc are linked with an edge, if and only if the corresponding updates share at least one variable in the bipartite-update
graph Gu. We also denote as � the max vertex degree of Gc.
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Figure 1: The above bipartite graph links
an update ui to a variable xj when an up-
date needs to access (read or write) the vari-
able. From Gu we obtain the conflict graph Gc,
whose max degree is �. If Gc is sufficiently
sparse, we expect that it is possible to paral-
lelize updates without too many conflicts. CY-
CLADES exploits this intuition.

We stress that the conflict graph is never actually con-
structed, but serves as a useful concept for understanding CY-
CLADES.

Our Main Result By exploiting the structure of the above
graphs and through a light-weight and careful sampling and
allocation of updates, CYCLADES is able to guarantee the fol-
lowing result for SU algorithms, which we establish in the fol-
lowing sections.

Theorem 1 (informal). Let us consider an SU algorithm A defined
through n update rules, where the conflict max degree between the
n updates is �, and the sampling distribution D is uniform with
(or without) replacement from {1, . . . , n}. Moreover, assume that
we wish to run A for T = ⇥(n) iterations, and that �L

�L


p
n.

Then on up to P = Õ( n

�·�L
) cores, CYCLADES guarantees a e⌦(P )

speedup over A, while outputting the same solution x as A would do after the same random set of T iterations.1

We will now provide some simple examples of how the above parameters, and guarantees translate for
specific problem cases.

Example 1. Many machine learning applications often seek to minimize the empirical risk

min
x

1

n

nX

i=1

`i(aT

i
x)

where ai represents the ith data point, x is the model we are trying to fit, and `i is a loss function that tells us how
good of a fit a model is with respect to data point i. Several problems can be formulated in the above way, such as
logistic regression, least squares, support vector machines (SVMs) for binary classification, and others. If we attempt
to solve the above problem using SGD (with or without regularization), or via variance reduction techniques like
SVRG and SAGA, then (as we show in Appendix A) the sparsity of the ui updates is determined by the gradient of a
single sampled data point i. For the aforementioned problems, this will be proportional to

⇣
d

du
`i(u)

��
u=aTi x

⌘
ai, hence

the sparsity of the update is defined by the non-zero support of datapoint ai. In the induced bipartite update-variable
graph of this problem, we have �L = maxi ||ai||0, and the maximum conflict degree � is the maximum number of data
points ai that share at least one of the d features. As a toy example, let n

d
= ⇥(1) and let the non-zero support of ai be

of size n
� and uniformly distributed. Then, one can show that with overwhelmingly high probability � = eO(n1/2+�)

and hence CYCLADES achieves an e⌦(P ) speedup on up to P = eO(n1/2�2�) cores.

Example 2. Consider the following generic minimization problem

min
x1,...,xm1

min
y1,...,ym2

m1X

i=1

m2X

j=1

�i,j(xi,yj)

where �i,j is a convex function of a scalar. The above generic formulation captures several problems like matrix
completion and matrix factorization [RR13] (where �i,j = (Ai,j � xT

i
yj)2), word embeddings [ALL+15] (where

�i,j = Ai,j(log(Ai,j)�kxi + xjk
2
2 �C)2), graph k-way cuts [NRRW11] (where �i,j = Ai,jkxi � xjk1), and others.

1e⌦(·) and eO(·) hide polylog factors.
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Stochastic Updates: A family of ML Algorithms
Many algorithms with 
sparse access patterns:

- SGD
- SVRG / SAGA

- Matrix Factorization
- word2vec
- K-means

- Stochastic PCA
- Graph Clustering

…

Can we parallelize under Serial Equivalence?



A graph view of Conflicts 
in Parallel Updates
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The Update Conflict Graph

An edge between 2 updates if they overlap



Lemma:
Sample less than vertices (with/without replacement)P  (1� ✏)
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The Theorem 
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Lemma:
Sample less than vertices (with/without replacement)

Then, the induced sub-graph shatters 

P  (1� ✏)
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The Theorem 
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Lemma:
Sample less than vertices (with/without replacement)

Then, the induced sub-graph shatters, 
The largest connected component has size 

P  (1� ✏)
n

�G

The Theorem 
[Krivelevich’14]

O

✓
log n

✏2

◆
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Even if the Graph was a Single Huge Conflict Component!



Building a Parallelization Framework 
out of a Single Theorem
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sample C.C.

Sample                        verticesB = (1� ✏) · n
�

Phase 1

Max Conn. Comp = logn => n/(Δlogn) tiny components

Yay! Good for parallelization

NOTE: No conflicts across groups!
Compute Conn. Components

No conflicts across groups = we can run Stochastic Updates on each of them in parallel!



Allocation
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Cores < Batch size / logn = n/(Δlogn)
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A Single Rule: Run the updates serially inside each connected component
Automatically Satisfied since we give each conflict group to a single core.

Cores < Batch size / logn = n/(Δlogn)
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Policy 1: Random allocation, good when cores << Batch size
Policy II: Greedy min-weight allocation

(80% as good as optimal (which is NP-hard))

A Single Rule: Run the updates serially inside each connected component
Automatically Satisfied since we give each conflict group to a single core.
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Each core runs  Asynchronously and Lock-free! (No communication!)
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No memory Contention!
Not during Reads, neither during Writes! 



Allocation

f1 f2

fn

conflict graph
f1 f2

fn

f1 f2

fn

Sample Batch + Connected Components

Core1 Core 2 Core p

Asynchronous and Lock-free Stochastic Updates

Core1 Core 2 Core p

SU SU SU

Wait for Everyone to Finish

sample C.C.
Phase 1

Phase 1I

Phase III



Allocation

f1 f2

fn

conflict graph
f1 f2

fn

f1 f2

fn

Sample Batch + Connected Components

Core1 Core 2 Core p

Asynchronous and Lock-free Stochastic Updates

Core1 Core 2 Core p

SU SU SU

Wait for Everyone to Finish

sample C.C.
Phase 1

Phase 1I

Phase III



Lemma 2. Let the number of cores by bounded as P = O( n

��L
), and let �L

�L


p
n. Then, computing the stochastic

updates across all nb = c ·
�

1�✏
batches can be performed in time O(E log2

n

P
· ), with high probability, where  is the

per edge cost for computing one of the n updates defined on Gu.

Stitching the pieces together Now that we have described the sampling, conflict computation, and allo-
cation strategies, we are ready to put all the pieces together and detail CYCLADES in full. Let us assume
that we sample a total number of nb = c ·

�
1�✏

batches of size B = (1 � ✏) n

� , and that each update is sam-
pled uniformly at random. For the i-th batch let us denote as C

i
1, . . .C

i
mi

the connected components on
the induced subgraph G

i
u

. Due to Theorem 3, each connected component C contains a number of at most
O( logn

✏2
) updates, and each update carries an ID (the order of which it would have been sampled by the

serial algorithm). Using the above notation, we give the pseudocode for CYCLADES in Alg. 2.

Algorithm 2 CYCLADES

1: Input: Gu, T,B.
2: Sample nb = T/B subgraphs G1

u, . . . ,G
nb
u from Gu

3: Cores compute in parallel CCs for sampled subgraphs
4: for batch i = 1 : nb do
5: Allocation of Ci

1, . . .Ci
mi

to P cores

6: for each core in parallel do
7: for each allocated component C do
8: for each update j (in order) from C do
9: xSj = uj(xSj , fj)

10: Output: x

Note that the inner loop that is parallelized (i.e.,
the SU processing loop in lines 6 – 9), can be per-
formed asynchronously; cores do not have to syn-
chronize, and do not need to lock any memory
variables, as they are all accessing non-overlapping
subset of x. This also provides for better cache co-
herence. Moreover, each core potentially accesses
the same coordinates several times, leading to good
cache locality. These improved cache locality and
coherence properties experimentally lead to sub-
stantial performance gains as we see in the next sec-
tion.

We can now combine the results of the previ-
ous subsection to obtain our main theorem for CY-
CLADES.

Theorem 4. Let us assume any given update-variable graph Gu with average, and max left degree �L and �L, such
that �L

�L


p
n, and with induced max conflict degree �. Then, CYCLADES on P = O( n

�·�L
) cores, with batch sizes

B = (1� ✏) n

� can execute T = c · n updates, for any constant c � 1, selected uniformly at random with replacement,
in time

O

✓
Eu · 

P
· log2

n

◆
,

with high probability.

Observe that CYCLADES bypasses the need to establish convergence guarantees for the parallel algo-
rithm. Hence, it could be the case for many applications of interest that although we might not be able to
analyze how “well” the serial SU algorithm might perform in terms of the accuracy of the solution, CY-
CLADES can provide black box guarantees for speedup, since our analysis is completely oblivious to the
qualitative performance of the serial algorithm. This is in contrast to recent studies similar to [DSZOR15],
where the authors provide speedup guarantees via a convergence-to-optimal proof for an asynchronous
SGD on a nonconvex problem. Unfortunately these proofs can become complicated especially on a wider
range of nonconvex objectives.

In the following section we show that CYCLADES is not only useful theoretically, but can consistently
outperform HOGWILD! on sufficiently sparse datasets.
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This guarantees Serially Equivalence
But does it guarantee speedups?
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Main Theorem

Assumptions:
1) Not too large max degree (approximate “regularity”)
2) Not too many cores
3) Sampling according to the “Graph Theorem”

Lemma 2. Let the number of cores by bounded as P = O( n

��L
), and let �L

�L


p
n. Then, computing the stochastic

updates across all nb = c ·
�

1�✏
batches can be performed in time O(E log2

n

P
· ), with high probability, where  is the

per edge cost for computing one of the n updates defined on Gu.

Stitching the pieces together Now that we have described the sampling, conflict computation, and allo-
cation strategies, we are ready to put all the pieces together and detail CYCLADES in full. Let us assume
that we sample a total number of nb = c ·

�
1�✏

batches of size B = (1 � ✏) n

� , and that each update is sam-
pled uniformly at random. For the i-th batch let us denote as C

i
1, . . .C

i
mi

the connected components on
the induced subgraph G

i
u

. Due to Theorem 3, each connected component C contains a number of at most
O( logn

✏2
) updates, and each update carries an ID (the order of which it would have been sampled by the

serial algorithm). Using the above notation, we give the pseudocode for CYCLADES in Alg. 2.

Algorithm 2 CYCLADES

1: Input: Gu, T,B.
2: Sample nb = T/B subgraphs G1

u, . . . ,G
nb
u from Gu

3: Cores compute in parallel CCs for sampled subgraphs
4: for batch i = 1 : nb do
5: Allocation of Ci

1, . . .Ci
mi

to P cores

6: for each core in parallel do
7: for each allocated component C do
8: for each update j (in order) from C do
9: xSj = uj(xSj , fj)

10: Output: x

Note that the inner loop that is parallelized (i.e.,
the SU processing loop in lines 6 – 9), can be per-
formed asynchronously; cores do not have to syn-
chronize, and do not need to lock any memory
variables, as they are all accessing non-overlapping
subset of x. This also provides for better cache co-
herence. Moreover, each core potentially accesses
the same coordinates several times, leading to good
cache locality. These improved cache locality and
coherence properties experimentally lead to sub-
stantial performance gains as we see in the next sec-
tion.

We can now combine the results of the previ-
ous subsection to obtain our main theorem for CY-
CLADES.

Theorem 4. Let us assume any given update-variable graph Gu with average, and max left degree �L and �L, such
that �L

�L


p
n, and with induced max conflict degree �. Then, CYCLADES on P = O( n

�·�L
) cores, with batch sizes

B = (1� ✏) n

� can execute T = c · n updates, for any constant c � 1, selected uniformly at random with replacement,
in time

O

✓
Eu · 

P
· log2

n

◆
,

with high probability.

Observe that CYCLADES bypasses the need to establish convergence guarantees for the parallel algo-
rithm. Hence, it could be the case for many applications of interest that although we might not be able to
analyze how “well” the serial SU algorithm might perform in terms of the accuracy of the solution, CY-
CLADES can provide black box guarantees for speedup, since our analysis is completely oblivious to the
qualitative performance of the serial algorithm. This is in contrast to recent studies similar to [DSZOR15],
where the authors provide speedup guarantees via a convergence-to-optimal proof for an asynchronous
SGD on a nonconvex problem. Unfortunately these proofs can become complicated especially on a wider
range of nonconvex objectives.

In the following section we show that CYCLADES is not only useful theoretically, but can consistently
outperform HOGWILD! on sufficiently sparse datasets.
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Note: 
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κ = cost / coordinate update
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batches can be performed in time O(E log2

n

P
· ), with high probability, where  is the

per edge cost for computing one of the n updates defined on Gu.

Stitching the pieces together Now that we have described the sampling, conflict computation, and allo-
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. Due to Theorem 3, each connected component C contains a number of at most
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✏2
) updates, and each update carries an ID (the order of which it would have been sampled by the

serial algorithm). Using the above notation, we give the pseudocode for CYCLADES in Alg. 2.

Algorithm 2 CYCLADES

1: Input: Gu, T,B.
2: Sample nb = T/B subgraphs G1

u, . . . ,G
nb
u from Gu

3: Cores compute in parallel CCs for sampled subgraphs
4: for batch i = 1 : nb do
5: Allocation of Ci

1, . . .Ci
mi

to P cores

6: for each core in parallel do
7: for each allocated component C do
8: for each update j (in order) from C do
9: xSj = uj(xSj , fj)

10: Output: x

Note that the inner loop that is parallelized (i.e.,
the SU processing loop in lines 6 – 9), can be per-
formed asynchronously; cores do not have to syn-
chronize, and do not need to lock any memory
variables, as they are all accessing non-overlapping
subset of x. This also provides for better cache co-
herence. Moreover, each core potentially accesses
the same coordinates several times, leading to good
cache locality. These improved cache locality and
coherence properties experimentally lead to sub-
stantial performance gains as we see in the next sec-
tion.

We can now combine the results of the previ-
ous subsection to obtain our main theorem for CY-
CLADES.

Theorem 4. Let us assume any given update-variable graph Gu with average, and max left degree �L and �L, such
that �L

�L


p
n, and with induced max conflict degree �. Then, CYCLADES on P = O( n

�·�L
) cores, with batch sizes

B = (1� ✏) n

� can execute T = c · n updates, for any constant c � 1, selected uniformly at random with replacement,
in time
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,

with high probability.

Observe that CYCLADES bypasses the need to establish convergence guarantees for the parallel algo-
rithm. Hence, it could be the case for many applications of interest that although we might not be able to
analyze how “well” the serial SU algorithm might perform in terms of the accuracy of the solution, CY-
CLADES can provide black box guarantees for speedup, since our analysis is completely oblivious to the
qualitative performance of the serial algorithm. This is in contrast to recent studies similar to [DSZOR15],
where the authors provide speedup guarantees via a convergence-to-optimal proof for an asynchronous
SGD on a nonconvex problem. Unfortunately these proofs can become complicated especially on a wider
range of nonconvex objectives.

In the following section we show that CYCLADES is not only useful theoretically, but can consistently
outperform HOGWILD! on sufficiently sparse datasets.
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Definition 2. We denote by Gc a conflict graph on n vertices, each corresponding to an update ui. Two vertices of
Gc are linked with an edge, if and only if the corresponding updates share at least one variable in the bipartite-update
graph Gu. We also denote as � the max vertex degree of Gc.
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Figure 1: The above bipartite graph links
an update ui to a variable xj when an up-
date needs to access (read or write) the vari-
able. From Gu we obtain the conflict graph Gc,
whose max degree is �. If Gc is sufficiently
sparse, we expect that it is possible to paral-
lelize updates without too many conflicts. CY-
CLADES exploits this intuition.

We stress that the conflict graph is never actually con-
structed, but serves as a useful concept for understanding CY-
CLADES.

Our Main Result By exploiting the structure of the above
graphs and through a light-weight and careful sampling and
allocation of updates, CYCLADES is able to guarantee the fol-
lowing result for SU algorithms, which we establish in the fol-
lowing sections.

Theorem 1 (informal). Let us consider an SU algorithm A defined
through n update rules, where the conflict max degree between the
n updates is �, and the sampling distribution D is uniform with
(or without) replacement from {1, . . . , n}. Moreover, assume that
we wish to run A for T = ⇥(n) iterations, and that �L

�L


p
n.

Then on up to P = Õ( n

�·�L
) cores, CYCLADES guarantees a e⌦(P )

speedup over A, while outputting the same solution x as A would do after the same random set of T iterations.1

We will now provide some simple examples of how the above parameters, and guarantees translate for
specific problem cases.

Example 1. Many machine learning applications often seek to minimize the empirical risk

min
x

1

n

nX

i=1

`i(aT

i
x)

where ai represents the ith data point, x is the model we are trying to fit, and `i is a loss function that tells us how
good of a fit a model is with respect to data point i. Several problems can be formulated in the above way, such as
logistic regression, least squares, support vector machines (SVMs) for binary classification, and others. If we attempt
to solve the above problem using SGD (with or without regularization), or via variance reduction techniques like
SVRG and SAGA, then (as we show in Appendix A) the sparsity of the ui updates is determined by the gradient of a
single sampled data point i. For the aforementioned problems, this will be proportional to

⇣
d

du
`i(u)

��
u=aTi x

⌘
ai, hence

the sparsity of the update is defined by the non-zero support of datapoint ai. In the induced bipartite update-variable
graph of this problem, we have �L = maxi ||ai||0, and the maximum conflict degree � is the maximum number of data
points ai that share at least one of the d features. As a toy example, let n

d
= ⇥(1) and let the non-zero support of ai be

of size n
� and uniformly distributed. Then, one can show that with overwhelmingly high probability � = eO(n1/2+�)

and hence CYCLADES achieves an e⌦(P ) speedup on up to P = eO(n1/2�2�) cores.

Example 2. Consider the following generic minimization problem

min
x1,...,xm1

min
y1,...,ym2

m1X

i=1

m2X

j=1

�i,j(xi,yj)

where �i,j is a convex function of a scalar. The above generic formulation captures several problems like matrix
completion and matrix factorization [RR13] (where �i,j = (Ai,j � xT

i
yj)2), word embeddings [ALL+15] (where

�i,j = Ai,j(log(Ai,j)�kxi + xjk
2
2 �C)2), graph k-way cuts [NRRW11] (where �i,j = Ai,jkxi � xjk1), and others.

1e⌦(·) and eO(·) hide polylog factors.
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O

⇣
n

�
· sparsity · log n

⌘

Theorem 2. Let G be a graph on n vertices, with maximum vertex degree �. Let us sample each vertex independently
with probability p = 1�✏

� and define as G
0 the induced subgraph on the sampled vertices. Then, the largest connected

component of G
0 has size at most 4

✏2
logn, with high probability.

The above result pays homage to the giant component phase transition phenomena in random Erdos-
Renyi graphs. What is surprising is that a similar phase transition can apply for any given graph!

Adapting to ML-friendly sampling procedures. In practice, for most SU algorithms of interest, the sam-
pling distribution of updates is either with or without replacement from the n updates. As it turns out,
morphing Theorem 2 into a with-/without-replacement result is not straightforward. We defer the analysis
needed to Appendix B, and present our main theorem about graph sampling here.

Theorem 3. Let G be a graph on n vertices, with maximum vertex degree �. Let us sample B = (1� ✏) n

� vertices
with or without replacement, and define as G

0 the induced subgraph on the sampled vertices. Then, the largest
connected component of G

0 has size at most O( logn

✏2
), with high probability.

The key idea from the above theorem is that if one samples no more than B = (1 � ✏) n

� vertices, then
there will be at least O (✏

2
B/logn) conflict groups to allocate across cores, all of size at most O

�
logn/✏

2
�
.

Moreover, since there are no conflicts between different conflict-groups, the processing of updates per any
single group will never interact with the variables corresponding to the updates of another conflict group.

The next step of CYCLADES is to form and allocate the connected components (CCs) across cores, and
do so efficiently. We address this in the following subsection. In the following, for simplicity we carry our
analysis for the with-replacement sampling case, but it can be readily extended to the without-replacement
sampling case.

Identifying Groups of Conflict via CCs In CYCLADES, we sample batches of updates of size B = (1� ✏) n

�
multiple times, and for each batch we need to identify the conflict groups across the updates. Let us refer to
G

i
u

as the subgraph induced by the ith sampled batch of updates on the update-variable bipartite graph Gu.
In the following we always assume that we sample at most nb = c ·

�
1�✏

batches, where c � 1 is a constant
that does not depend on n. This number of batches results in a constant number of passes over the dataset.

Identifying the conflict groups in G
i
u

can be done with a connected components (CC) algorithm. The
main question we need to address is what is the best way to parallelize this graph partitioning part. There
are two avenues that we can take for this, depending on the number of cores P at our disposal. We can
either parallelize the computation of the CCs of a single batch (i.e., compute the CCs of G

i
u

on P cores), or
we can compute in parallel the CCs of all nb batches, by allocating the sampled graphs G

i
u

to cores, so that
each of them can compute the CCs of its allocated subgraphs. Depending on the number of available cores,
one technique can be better than the other. In Appendix C we provide the details of this part, and prove the
following result:

Lemma 1. Let the number of cores by bounded as P = O( n

��L
), and let �L

�L


p
n. Then, the overall computation of

CCs for nb = c ·
�

1�✏
batches, each of size B = (1� ✏) n

� , costs no more than O(Eu log2
n

P
).

Allocating Updates to Cores Once we compute the CCs (i.e., the conflicts groups of the sampled updates),
we have to allocate them across cores. Once a core has been assigned with CCs, it will process the updates
included in these CCs, according to the order that each update has been labeled with. Due to Theorem 3,
each connected component will contain at most O( logn

✏2
) updates. Assuming that the cost of the j-th update

in the batch is wj , the cost of a single connected component C will be wC =
P

j2C wj . To proceed with
characterizing the maximum load among the P cores, we assume that the cost of a single update ui, for
i 2 {1, . . . , n}, is proportional to the out-degree of that update —according to the update-variable graph
Gu— times a constant cost which we shall refer to as . Hence, wj = O(dL,j · ), where dL,j is the degree of
the j-th left vertex of Gu. In Appendix D we establish that a near-uniform allocation of CCs according to
their weights leads to the following guarantee.

5
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Lemma:
Activate each vertex with probability 

p = (1-ε) /Δ

Then, the induced subgraph shatters, 
and the largest connected component has size

�G
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DFS with random coins

X1

X2

X3

X4

X5

X6

Algorithm:
- Flip a coin for each vertex DFS wants to visit
- If 1 visit, if 0 don’t visit and delete with its edges
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Algorithm:
- Flip a coin for each vertex DFS wants to visit
- If 1 visit, if 0 don’t visit and delete with its edges
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- Say I have a connected component of size k
- #random coins flipped “associated” to that component <= k *Δ
- Since I have a size k component it means that I had the event
“at least k coins are “ON” in a set of k * Δ coins”

X2 = 0 X3 = 1

X1 = 1
X4 = 0

X5 = 1

X6 = 1

DFS with random coins

1. Let p = 1−ε
d . Let k = 4

ε2
lnn. Then whp there is no interval of length kd in [n], in which at

least k of the random variables Xi take value 1.

2. Let p = 1+ε
d . Then whp

∑ε3n
i=1 Xi ≤

2ε3n
d .

3. Let p = 1+ε
d . Then whp

∑εn
i=1 Xi ≤

2εn
d .

4. Let p = 1+ε
d . Then whp for every ε3n ≤ t ≤ εn,

∑t
i=1Xi ≥

(1+ 3ε
4 )t

d .

Proof. (1) For a given interval I of length kd in [n], the sum
∑

i∈I Xi is distributed binomially with

parameters kd and p. Applying the standard Chernoff-type bound (see, e.g., Theorem A.1.11 of

[3]) to the upper tail of Bin(kd, p), and then the union bound, we see that the probability of the

existence of an interval violating the assertion of the lemma is at most

(n− kd+ 1)Pr[B(kd, p) ≥ k] < n · e−
ε2

3 (1−ε)k < n · e−
ε2(1−ε)

3
4
ε2

lnn = o(1) ,

for small enough ε > 0.

(2) This follows by applying Chernoff to the upper tail of
∑ε3n

i=1Xi ∼ Bin
(

ε3n, 1+ε
d

)

.

(3) This follows by applying Chernoff to the upper tail of
∑εn

i=1Xi ∼ Bin
(

εn, 1+ε
d

)

.

(4) Partition [εn] into 1/ε3 intervals Ij of length ε4n each. Applying Chernoff to the lower tails of

the interval sums
∑

i∈Ij
Xi and then the union bound, we derive that whp for all j

∑

i∈Ij

Xi ≥
ε4(1 + ε)n

d
−

ε6n

d
,

say. Assume this to be true. Then for ε3n ≤ t ≤ εn,

t
∑

i=1

Xi ≥

⌊

t

ε4n

⌋ (

ε4(1 + ε)n

d
−

ε6n

d

)

≥

(

1 + 3ε
4

)

t

d
.

3 Proofs

3.1 Proof of Theorem 1

Assume to the contrary that R contains a connected component C with at least k = 4
ε2
lnn vertices.

Let us look at the epoch of the DFS when C was created. Consider the moment inside this epoch

when the algorithm found the k-th vertex of C and has just moved it to U . Denote C0 = (S∪U)∩C

6

A Little extra trickery to turn this statement 
to a with or without replacement  Theorem.



Is Max.Degree really an issue?



Say we have a graph with a low-degree component
+ some high degree vertices

High Degree Vertices
(outliers)

�G



Lemma:
If you sample uniformly less than vertices
Then, the induced subgraph of the low-degree (!) part 
shatters,  and the largest connected component has size (whp) 

is the max degree is the low-degree subgraph

P  (1� ✏)
n

�G
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Corollary 2. For any number of cores P = O( n

�·�L
), computing the stochastic updates of the allocated connected

component for all sampled graphs (i.e., batches) G
1
u
, . . . ,G

nb
u

can be performed in time O(E log2
n

P
· ).

E Robustness against High-degree Outliers

Here, we discuss how CYCLADES can guarantee nearly linear speedups when there is a sublinear O(n�)
number of high-conflict updates, as long as the remaining updates have small degree.

Assume that our conflict graph Gc defined between the n update functions has a very high maximum
degree �o. However, consider the case where there are only O(n�) nodes that are of that high-degree,
while the rest of the vertices have degree much smaller (on the induced subgraph by the latter vertices),
say �. According to our main analysis, our prescribed batch sizes cannot be greater than B = (1� ✏) (1�✏)n

�o
.

However, if say �o = ⇥(n), then that would imply that B = O(1), hence there is not room for parallelization
by CYCLADES. What we will show, is that by sampling according to B = (1� ✏)n�O(n�)

� , we can on average
expect a parallelization that is similar to the case where the outliers are not present in the conflict graph.
For a toy example see Figure 10.

�o = 6

� = 2

Figure 10: The above conflict graph has a vertex with high degree (i.e., �o = 6), and the remaining of the graph has
maximum induced degree � = 2. In this toy case, when we sample roughly n�1

� = 3 vertices, more often than not, the
large degree vertex will not be part of the sampled batch. This implies that when parallelizing with CYCLADES these
cases will be as much parallelizable as if the high degree vertex was not part of the graph. Each time we happen to
sample a batch that includes the max. degree vertex, then essentially we lose all flexibility to parallelize, and we have
to run the serial algorithm. What we establish rigorously is that “on average" the parallelization will be as good as one
would hope for even in the case where the outliers are not present.

Our main result for the outlier case follows:

Lemma 7. Let us assume that there are O(n�) outlier vertices in the original conflict graph G with degree at most
�o, and let the remaining vertices have degree (induced on the remaining graph) at most �. Let the induced update-
variable graph on these low degree vertices abide to the same graph assumptions as those of Theorem 4. Moreover, let
the batch size be bounded as

B  min

⇢
(1� ✏)

n�O(n�)

�
, O

✓
n

1��

P

◆�
.

Then, the expected runtime of CYCLADES will be O
�

Eu·
P

· log2
n
�
.

Proof. Let w
i
s

denote the total work required for batch i if that batch contains no outlier notes, and w
i
o

otherwise. It is not hard to see that ws =
P

i
w

i
s

= O
�

Eu·
P

· log2
n
�

and wo =
P

i
w

i
s

= O
�
Eu ·  · log2

n
�

Hence, the expected computational effort by CYCLADES will be

ws ·Pr{a random batch contains no outliers}+ wo Pr{a random batch contains outliers}
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Experiments
Implementation in C++

Experiments on Intel  Xeon CPU E7-8870 v3
1TB RAM

Dataset # datapoints # features
Density (average

Commentsnumber of features
per datapoint)

NH2010 48,838 48,838 4.8026 Topological graph of 49
Census Blocks in New Hampshire.

DBLP 5,425,964 5,425,964 3.1880 Authorship network of 1.4M authors
and 4M publications, with 8.65M edges.

MovieLens ⇠10M 82,250 200 10M movie ratings from 71,568 users
for 10,682 movies.

EN-Wiki 20,207,156 213,272 200 Subset of English Wikipedia dump.

Table 1: Details of datasets used in our experiments.

4 Evaluation

4.1 Implementation and Setup
We implemented CYCLADES in C++ and tested it on a variety of problems and datasets described below.
We tested a number of stochastic updates algorithms, and compared against their HOGWILD! (i.e., asyn-
chronous and lock-free) implementations — in some cases, there are no theoretical foundations for these
HOGWILD! implementations, even if they work reasonably well in practice. Since CYCLADES is intended
to be a general approach for parallelization of stochastic updates algorithms, we do not compare against al-
gorithms designed and tailored for specific applications, nor do we expect CYCLADES to outperform every
such highly-tuned, well-designed, specific algorithms.

Our experiments were conducted on a machine with 72 CPUs (Intel(R) Xeon(R) CPU E7-8870 v3, 2.10
GHz) on 4 NUMA nodes, each with 18 CPUs, and 1TB of memory. We ran both CYCLADES and HOGWILD!
with 1, 4, 8, 16 and 18 threads pinned to CPUs on a single NUMA node (i.e., the maximum physical number
of cores possible, for a single node), so that we can avoid well-known cache coherence and scaling issues
across different nodes [ZR14]. We note that distributing threads across NUMA nodes significantly increased
running times for both CYCLADES and HOGWILD!, but was relatively worse for HOGWILD!. We believe this
is due to the poorer locality of HOGWILD!, which results in more cross-node communication. In this paper,
we exclusively focus our study and experiments on parallelization within a single NUMA node, and leave
cross-NUMA node parallelization for future work, while referring the interested reader to a recent study of
the various tradeoffs of ML algorithms on NUMA aware architectures [ZR14].

In our experiments, we measure overall running times which include the overheads for computing
connected components and allocating work in CYCLADES. Separately, we also measure running times for
performing the stochastic updates by excluding the CYCLADES coordination overheads. We also compute
the objective value at the end of each epoch (i.e., one full pass over the data). We measure the speedups for
each algorithm as

time of the parallel algorithm to reach ✏ objective
time of the serial algorithm to reach ✏ objective

where ✏ was chosen to be the smallest objective value that is achievable by all parallel algorithms on every
choice of number of threads. That is, ✏ = maxA,T mine f(XA,T,e) where XA,T,e is the model learned by
algorithm A on T threads after e epochs. The serial algorithm used for comparison is HOGWILD! running
serially on one thread.

In Table 1 we list some details of the datasets that we use in our experiments. The stepsizes and batch
sizes used for each problem are listed in Table 2, along with dataset and problem details. In general, we
chose the stepsizes to maximize convergence without diverging. Batch sizes were picked to optimize per-
formance for CYCLADES.
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Speedups

and identically for vw0 Then, at the end of each full pass over the data, we update the constant C by its
locally optimal value, which can be calculated in closed form:

C  

P
w,w0 Aw,w0(log(Aw,w0)� kvw + vw0k

2
2)P

w,w0 Aw,w0
.

In our experiments, we optimized for a word embedding of dimension r = 100, and tested on a 80MB
subset of the English Wikipedia dump available at [Mah06]. The dataset contains 213K words and A has
20M non-zero entries. For our experiments, we run SGD for 200 epochs.

4.3 Speedup and Convergence Results
In this subsection, we present the bulk of our experimental findings. Our extended and complete set of
results can be found in Appendix F.

(a) Least Squares, DBLP, SAGA (b) Graph Eig., NH2010, SVRG (c) Mat. Comp., 10M, `2-SGD (d) Word2Vec, EN-Wiki, SGD

Figure 3: Convergence of CYCLADES and HOGWILD! in terms of overall running time with 1, 8, 16, 18 threads.
CYCLADES is initially slower, but ultimately reaches convergence faster than HOGWILD!.

(a) Least squares, DBLP, SAGA (b) Graph Eig., NH2010, SVRG (c) Mat. Comp., 10M, `2-SGD (d) Word2Vec, EN-Wiki, SGD

Figure 4: Speedup of CYCLADES and HOGWILD! versus number of threads. On multiple threads, CYCLADES always
reaches ✏ objective faster than HOGWILD!. In some cases CYCLADES is faster than HOGWILD! even on 1 thread, due
to better cache locality. In Figs. 4(a) and 4(b), CYCLADES exhibits significant gains, since HOGWILD! suffers from
asynchrony noise for which we had to use comparatively smaller stepsizes to prevent divergence.

Least squares When running SAGA for least squares, we found that HOGWILD! was divergent with the
large stepsizes that we were using for CYCLADES (Fig. 5). Thus, in the multi-thread setting, we were only
able to use smaller stepsizes for HOGWILD!, which resulted in slower convergence than CYCLADES, as seen
in Fig. 3(a). The effects of a smaller stepsize for HOGWILD! are also manisfested in terms of speedups in
Fig. 4(a), since HOGWILD! takes a longer time to converge to an ✏ objective value.
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Convergence

Figure 5: Convergence of CYCLADES and HOGWILD!
on least squares using SAGA, with 16 threads, on DBLP
dataset. HOGWILD! diverges with � > 10�5; thus, we were
only able to use a smaller step size � = 10�5 for HOGWILD!
on multiple threads. For HOGWILD! on 1 thread (and CY-
CLADES on any number of threads), we could use a larger
stepsize of � = 3⇥ 10�4.

Graph eigenvector The convergence of SVRG for
graph eigenvectors is shown in Fig. 3(b). CY-
CLADES starts off slower than HOGWILD!, but al-
ways produces results equivalent to the conver-
gence on a single thread. Conversely, HOGWILD!
does not exhibit the same behavior on multiple
threads as it does serially—in fact, the error due to
asynchrony causes HOGWILD! to converge slower
on multiple threads. This effect is clearly seen on
Figs. 4(b), where HOGWILD! fails to converge faster
than the serial counterpart, and CYCLADES attains
a significantly better speedup on 16 threads.

Matrix completion and word embeddings Fig-
ures 3(c) and 3(d) show the convergence for the ma-
trix completion and word embeddings problems.
CYCLADES is initially slower than HOGWILD! due
to the overhead of computing connected compo-
nents. However, due to better cache locality and
convergence properties, CYCLADES is able to reach a lower objective value in less time than HOGWILD!. In
fact, we observe that CYCLADES is faster than HOGWILD! when both are run serially, demonstrating that
the gains from (temporal) cache locality outweigh the coordination overhead of CYCLADES. These results
are reflected in the speedups of CYCLADES and HOGWILD! (Figs. 4(c) and 4(d)). CYCLADES consistently
achieves a better speedup (9� 10⇥ on 18 threads) compared to that of HOGWILD! (7� 9⇥ on 18 threads).

4.4 Runtime Breakdown
Partitioning and allocation costs The cost of partitioning and allocation for CYCLADES is given in Table
3, relatively to the time that HOGWILD! takes to complete one epoch of stochastic updates (i.e., a single pass
over the dataset). For matrix completion and the graph eigenvector problem, on 18 threads, CYCLADES
takes the equivalent of 4-6 epochs of HOGWILD! to complete its partitioning, as the problem is either very
sparse or the updates are expensive. For solving least squares using SAGA and word embeddings using
SGD, the cost of partitioning is equivalent to 11-14 epochs of HOGWILD! on 18 threads. However, we point
out that partitioning and allocation is a one-time cost which becomes cheaper with more stochastic update
epochs. Additionally, we note that this cost can become amortized quickly due to the extra experiments one
has to run for hyperparameter tuning, since the graph partitioning is identical across different stepsizes one
might want to test.

# Least Squares Least Squares Graph Eig. Graph Eig. Mat. Comp. Mat. Comp. Word2Vec
threads SAGA SAGA SVRG SVRG SGD Weighted SGD SGD

NH2010 DBLP NH2010 DBLP MovieLens MovieLens EN-Wiki
1 1.9155 2.2245 0.9039 0.9862 0.7567 0.5507 0.5299
4 4.1461 4.6099 1.6244 2.8327 1.8832 1.4509 1.1509
8 6.1157 7.6151 2.0694 4.3836 3.2306 2.5697 1.9372
16 11.7033 13.1351 3.2559 6.2161 5.5284 4.6015 3.5561
18 11.5580 14.1792 4.7639 6.7627 6.1663 5.5270 3.9362

Table 3: Cost of partitioning and allocation. The table shows the ratio of the time that CYCLADES consumes for
partition and allocation over the time that HOGWILD! takes for 1 full pass over the dataset. On 18 threads, CYCLADES
takes between 4-14 HOGWILD! epochs to perform partitioning. Note however, this computational effort is only required
once per dataset.

11

Least Squares SAGA
16 threads



Open Problems
Assumptions: Sparsity is Key

maybe…
We can relax serial equivalence to an “expected” one?

O.P. : 
Data sparsification

for f(<a,x>) problems?

O.P. : 
Can we handle Dense Data?



Open Problems
Asynchronous algorithms great for Shared Memory Systems

- Issues when scaling across nodes

- Similar Issues for Distributed:

O.P. : 
How to provably scale on NUMA?

O.P. : 
What is the right ML Paradigm 

for Distributed?
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a framework for Parallel Sparse ML algorithms

- Lock-free +  (maximally) Asynchronous

- No Conflicts

- Serializable

- Black-box analysis

CYCLADES



Next Time
- Communication Bottlenecks

- Compressed Gradients

- Quantization
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