Serially Equivalent + Scalable
Parallel Machine Learning

loday

Serial Equivalence

Beyond Hogwild

ow much asynchrony is possible?

Open Problems

Single Machine, Multi-core

Core

L1 Cache

Core Core

L1 Cache L1 Cache

L2 Cache L2 Cache

L2 Cache

DRAM

GPU

Processor 2 @

Processor P @

loday

Aserial(sa 7T) — Aparallel(sa 7T)

For all Data sets S
For all data order W (data points can be arbitrarily repeated)

Main advantage:
- we only need to “prove” speedups

- Convergence proofs inherited directly from serial

Main Issue:
- Serial equivalence too strict
- Cannot guarantee any speedups In the general case

The Stochastic Updates

Meta-algorithm

Stochastic Updates

F=—————— -
Algorithm 1 Stochastic Updates pseudo-algorithm | /I X1 :
1. Input: x; f1,..., fn; w1,...,un; D; T : U1 —/_.C@I
2: fort=1:Tdo | 2 _—
3: samplei~D | :
4. xs, = ui(xs,, fi) //update global model on §; : U, I
5. Output: x , T :

VWhat does this solve!

Stochastic Updates: A family of ML Algorithms

Many algorithms with

Data points Variables
sparse access patterns:

- SGD |
- SVRG / SAGA 2
- Matrix Factorization
- word2vec
- K-means
- Stochastic PCA N

- Graph Clustering

Can we parallelize under Serial Equivalence!?

A graph view of Conflicts

in Parallel Updates

The Update Conflict Graph

conflict graph
f1 J2

fn

An edge between 2 updates If they overlap

The Theorem

conflict graph [Krivelevich’ | 4]
fi f2
o—
@
Lemma: n
Sample less than P < (1 — e)— vertices (with/without replacement)

Ag

The Theorem

conflict graph [Krivelevich’ | 4]

fi P
\
e fn

lemma:

n
Sample less than P < (1 — G)A— vertices (with/without replacement)
G

Then, the induced sub-graph shatters

The Theorem

conflict graph [Krivelevich’ | 4]
fi f2
d —
: ©
Lemma:

n
Sample less than P < (1 — e)— vertices (with/without replacement)

Ag

Then, the induced sub-graph shatters,
The largest connected component has size

logn
(&)

Even if the Graph was a Single Huge Conflict Component!

Building a Parallelization Framework

out of a Single Theorem

Sample Batch + Connected Components
conflict graph

fl f2 f1 f2
Phase | @ P—
In - In

Sample B=(1—¢)- % vertices

Sample Batch + Connected Components
conflict graph

ML

Sample B=(1—¢)- % vertices

Sample Batch + Connected Components

conflict graph
f1 f2 fl f2
Phase | Pm— \
7 ©

In

Sample B=(1—¢)- % vertices
Compute Conn. Components

NOTE: No conflicts across groups!

Max Conn. Comp = logn => n/(Alogn) tiny components

Yay! Good for parallelization

No conflicts across groups = we can run Stochastic Updates on each of them in parallel!

Sample Batch + Connected Components
conflict graph

Ut

Allocation

U U= L

Corel Core 2 Core p

Cores < Batch size / logn = n/(Alogn)

Sample Batch + Connected Components
conflict graph

Ut

Allocation
Phase || (= @
be) \@) Ly
Corel Core 2 Core p

Cores < Batch size / logn = n/(Alogn)

A Single Rule: Run the updates serially inside each connected component

Automatically Satisfied since we give each conflict group to a single core.

Phase |

Phase |l

Sample Batch + Connected Components
conflict graph

E@W"‘\é

\@_@) @ Alloca’uoi 3 \&@}
Core! Core 2 Core p

Policy |: Random allocation, good when cores << Batch size

Policy II: Greedy min-weight allocation
(80% as good as optimal (which is NP-hard))

A Single Rule: Run the updates serially inside each connected component

Automatically Satisfied since we give each conflict group to a single core.

Phase |

Phase |l

Phase llI

Sample Batch + Connected Components
conflict graph

ﬁ@ww

\@_@) @ Alloca’uo: 3 \&@)
Core! Core 2 Core p

-

Asynchronous and Lock-free Stochastic Updates

Lo

Corel Core 2 Core p

Sample Batch + Connected Components
conflict graph

A w—' =]

Allocation
Phase || (= @
be) \@) Ly
Corel Core 2 Core p

-

Asynchronous and Lock-free Stochastic Updates

-

Corel Core 2 Core p

Each core runs Asynchronously and Lock-free! (No communication!)

Phase |

Phase |l

Phase llI

Sample Batch + Connected Components
conflict graph

@W"‘\é

\@_@) @ Allocatioi 3 \&@)
Core! Core 2 Core p

-

Asynchronous and Lock-free Stochastic Updates

Lo

Corel Core 2 Core p

No memory Contention!

Not during Reads, neither during Wrrites!

Phase |

Phase |l

Phase llI

Sample Batch + Connected Components
conflict graph

z:@wm

\@_@) @ Alloca’uo: 3 \&@)
Core! Core 2 Core p

-

Asynchronous and Lock-free Stochastic Updates

Lo

Corel Core 2 Core p

Wait for Everyone to Finish

Phase |

Phase |l

Phase llI

v

Sample Batch + Connected Components
conflict graph

f@ww

\@_@) @ Alloca’uoi 3 \&@)
Core! Core 2 Core p

-

Asynchronous and Lock-free Stochastic Updates

Lo

Corel Core 2 Core p

Wait for Everyone to Finish

Algorithm 2 CYCLADES

: Input: G, T, B.

. Sample n, = T/ B subgraphs G,,, ..., Gy° from G,

: Cores compute in parallel CCs for sampled subgraphs
. for batch?=1:n; do

Allocation of C, .. Cﬁnz to P cores

for each core in parallel do
for each allocated component C do
for each update j (in order) from C do

XS; = ’Uzj(XSj,fj)

N N AN R AR A > v

—
-

: Output: x

This suarantees Serially Equivalence

But does It guarantee speedups!

Sample Batch + Connected Components

conflict graph
fi f2
Phase | /%/ » g
Allocation
Phase || ‘@@ ’ ‘O@’ ‘ @@’
Corel Core 2 Core p

Phase llI

This Is as fast as It gets

hase | and Il are fast
We are good.

This s as fast as It gets

71 1
:u1 §—:a¢;|
| Y2 | Note:
1 : Serial Cost = Fy, - K
: Un $d| K = cost / coordinate update
L |

Theorem 4. Let us assume any given update-variable graph G, with average, and max left degree A and Ar, such
that %—i < /n, and with induced max conflict degree A. Then, CYCLADES on P = O(ﬁh) cores, with batch sizes

B = (1 —€) x can execute T' = c - n updates, for any constant c > 1, selected uniformly at random with replacement,

in time 5 p
(’)(z})/‘é.logzn) » Speedup: _ -

log? n

with high probability.

Assumptions:

1) Not too large max degree (approximate “regularrty”)
2) Not too many cores

3) Sampling according to the “Graph Theorem”

MW |dentical performance as serial for

- SGD
- SVRG / SAGA
- Sparse Network training
- Matrix Factorization
- Word2Vec
- Matrix Completion
e Il - - Greedy Clustering

Phase |l

Fast Connected Components

Fast Connected Components

conflict graph

©

If you have the conflict graph CC is easy... O(Sampled Edges)

Building the conflict graph requires n*2 time...

No, thanks.

Fast Connected Components

f

left vertices

Sample n/A f2 /:
4>

fn\

Sample on the Bipartite, not on the Conflict Graphs

Fast Connected Components

Simple Message passing Idea
-Gradients send their IDs
-Coordinates Compute Min and Send Back
-Gradients Compute Min and Send Back
terate till you're done

Fast Connected Components

, —
) h——

3/>
3T>

Simple Message passing Idea
-Gradients send their IDs
-Coordinates Compute Min and Send Back
-Gradients Compute Min and Send Back
terate till you're done

Fast Connected Components

Simple Message passing Idea
-Gradients send their IDs
-Coordinates Compute Min and Send Back
-Gradients Compute Min and Send Back
terate till you're done

Fast Connected Components

Simple Message passing Idea
-Gradients send their IDs
-Coordinates Compute Min and Send Back
-Gradients Compute Min and Send Back
terate till you're done

Fast Connected Components

Simple Message passing Idea
-Gradients send their IDs
-Coordinates Compute Min and Send Back
-Gradients Compute Min and Send Back
terate till you're done

Fast Connected Components

Simple Message passing Idea
-Gradients send their IDs
-Coordinates Compute Min and Send Back
-Gradients Compute Min and Send Back
terate till you're done

Fast Connected Components

Simple Message passing Idea
-Gradients send their IDs
-Coordinates Compute Min and Send Back
-Gradients Compute Min and Send Back
terate till you're done

Fast Connected Components

Ce i

Simple Message passing Idea
-Gradients send their IDs
-Coordinates Compute Min and Send Back
-Gradients Compute Min and Send Back
terate till you're done

Fast Connected Components

Ce i

Cost = O(By I;gQ =)

Same assumptions as main theorem

Proof of "The Theorem”

The Theorem

| emma:

Activate each vertex with probability
p=(l-g)/A

Then, the induced subgraph shatters,

and the largest connected component has size

4 1
—_ e O n
€2 &

DFS O]

[

[

[

[

Probabillistic DFS

DFS with random coins

vX6

gorithm:
~lip a coin for each vertex DFS wants to visit
f 1 wvisit, if O don't visit and delete with its edges

DFS with random coins

gorithm:
~lip a coin for each vertex DFS wants to visit
f 1 wvisit, if O don't visit and delete with its edges

DFS with random coins

/

Xo
X1 =1

0
W
-
-

gorithm:
~lip a coin for each vertex DFS wants to visit
f 1 wvisit, if O don't visit and delete with its edges

DFS with random coins

gorithm:
~lip a coin for each vertex DFS wants to visit
f 1 wvisit, if O don't visit and delete with its edges

DFS with random coins

gorithm:
~lip a coin for each vertex DFS wants to visit
f 1 wvisit, if O don't visit and delete with its edges

DFS with random coins

gorithm:
~lip a coin for each vertex DFS wants to visit
f 1 wvisit, if O don't visit and delete with its edges

DFS with random coins

gorithm:
~lip a coin for each vertex DFS wants to visit
f 1 wvisit, if O don't visit and delete with its edges

DFS with random coins

gorithm:
~lip a coin for each vertex DFS wants to visit
f 1 wvisit, if O don't visit and delete with its edges

DFS with random coins

X4=0

gorithm:
~lip a coin for each vertex DFS wants to visit
f 1 wvisit, if O don't visit and delete with its edges

DFS with random coins

X4=0

gorithm:
~lip a coin for each vertex DFS wants to visit
f 1 wvisit, if O don't visit and delete with its edges

DFS with random coins

X4=0

gorithm:
~lip a coin for each vertex DFS wants to visit
f 1 wvisit, if O don't visit and delete with its edges

DFS with random coins

A Little extra trickery to turn this statement

to a with or without replacement Theorem.

- Say |
- #random coins Tlipped associated to that component <= k *A
- Since | have a size k component it means that | had the event
“at least k coins are “ON"" In a set of k * A coins”

62(1—6)

62
(n —kd+ 1)Pr[B(kd,p) > k] <n-e 5079k < p.e7 3 a2

s Max.Degree really an issue?

ish Degree Vertices
(outliers)

Say we have a graph with a low-degree component
+ some high degree vertices

ish Degree Vertices
(outliers)

1550 3

Lemma: n

If you sample uniformly less than £ = (1 - G)A_G vertices
Then, the induced subgraph of the low-degree (!) part
shatters, and the largest connected component has size (whp)

4
o logn

A G is the max degree Is the low-degree subgraph

ish Degree Vertices
(outliers)

‘_v

Lemma 7. Let us assume that there are O(n°) outlier vertices in the original conflict graph G with degree at most
A,, and let the remaining vertices have degree (induced on the remaining graph) at most A. Let the induced update-
variable graph on these low degree vertices abide to the same graph assumptions as those of Theorem 4. Moreover, let

the batch size be bounded as 5 1-5
B §min{(1—e)—n_i(n), 0, (nP)}

Then, the expected runtime of CYCLADES will be O (£%% -log®n) .

Experiments

Experiments

Implementation in C++
Experiments on Intel Xeon CPU E/-8870 v3

| TB RAM
Density (average
Dataset # datapoints | # features | number of features
per datapoint)

SAGA NH2010 48,838 48,838 4.8026

SVRG DBLP 5,425,964 5,425,964 3.1880
L2-5GD MovieLens ~10M 82,250 200
EN-Wiki 20,207,156 213,272 200

Full asynchronous (Hogwild!)

VS
CYCLADES

Speedups

(S,]

@=® Cyclades

-g d—h HogWild! _r_:o 3.0 @-@ ‘Cycl‘ades‘

§4 : §2'5 A=A HogWild!

G) -t

2 220 o) '
> ~

SVRG/SAGA EE 2 500% gain

o 5 @ 1.5

o

3 51.0
©

01 o

3 o5 SR

12 4 6 8 10 12 14 16 18 12 4 6 8 10 12 14 16 18
Number of threads Number of threads

(a) Least squares, DBLP, SAGA (b) Graph Eig., NH2010, SVRG

Convergence

Least Squares SAGA
| 6 threads

1016 |[v+ Hogwild: y=2e-05 -
== HogWild! y=1e-05 N
msm Cyclades v=0.0003 s
O 1014 i :"
= z
© 12 NS
> 10 N
S . 10
5 1077 | N
@) =
L -
O
@)
Overall running time / s

Open Problems

Assumptions: Sparsity is Key

QO.P:
Can we handle Dense Data!

O.P:

Data sparsification
for f(<ax>) problems!?

maybe...
We can relax serial equivalence to an “expected’” one!

Open Problems

Asynchronous algorithms great for Shared Memory Systems

: I/
- Issues when scaling across nodes

A

. awr 00
#threads
OFR: o
How to provably scale on NUMA? i

- Similar Issues for Distributed: OF:
What is the right ML Paradigm

speedup

for Distributed?

CYCLADES

B O T AT o . iy i A
N T ki “:'-" R 6. (T
FE DY T SN S g
v

a framework for Parallel Sparse ML algorithms

Lock-free + (maximally) Asynchronous
No Conflicts
Serializable

Black-box analysis

Next [ime

- Communication Bottlenecks
- Compressed Gradients

- Quantization

Reading List

Krivelevich, M., 2014.The phase transition in site percolation on pseudo-random graphs. arXiv preprint
arXiv:1404.5731.

Pan, X, Lam, M., Tu, S., Papailiopoulos, D., Zhang, C., Jordan, M.l, Ramchandran, K. and R¢, C., 201 6.
Cyclades: Conflict-free asynchronous machine learning. Advances in Neural Information Processing

Systems, 29.

Pan, X., Papailiopoulos, D., Oymak, S., Recht, B., Ramchandran, K. and Jordan, M.l, 201 5. Parallel correlation
clustering on big graphs. Advances in Neural Information Processing Systems, 28.

