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Minimizing the Empirical Risk

* [he empirical cost function that we have access to
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e Question; Can we approximate the solution to this minimization? If so
how fast!

* [he answer must depend on:
) n, the sample size
2) # ,the hypothesis class and loss function

3) &, the data distribution
4) the optimization alsorithm that outputs our classifier



L ast time: PL 1s go0a



SGD/GD on general non convex functions?

Theorem

Let f(w) be a f-smooth function with L-bounded stoch. gradients (i.e., E;||Vf(w)|| < L).Then, the gradients of

R
SGD with step-size ¥ = satish
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This Is a very slow rate, that Is very conservative. Makes sense!

[t also doesn't tell us anything about the quality of the solution that SGD finds




GD on Polyak-t.ojasiewicz functions

Theorem

2
Let f(w) be a f-smooth, u-PL function (l.e,, ” V., L(w) ” > u(L(w) — L*).

1
Then, GD with with step-size y = T satisfies
k
Jw) —f* < (1 — %) (flwg) — f*)
JWip) = fw) < VW, Wiy — wi) + é||Wk — Wk+1||2
Proof: ; 2
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much faster rate, when Is PL satisfied?

= JWi) =JW) =77 < == [IVVWII" = = — (G W) —J7) —

p P

FWeyy) — f% < — %(f(wk) —5) = (% — fwy)

LK

ﬂ)(f(wk) — /%)

f(Wk+1) —f* < (



Overparameterized Nonlinear Learning:
Gradient Descent Takes the Shortest Path?

Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks
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error guarantees for multilayer neural networks
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PL in Nonlinear Least Squares



Nonlinear least squares

Let's say we are trying to solve min ||A(X; w) — y||* with GD
w
The gradient of the loss is equal to V [|A(X;w) — y||? = [V, h(X; w)](R(X; w) — y)




Nonlinear least squares

GD.
The gradient of the loss is equal to V [|A(X;w) — sz =V, A(X;w)]|(h(X;w) —y)

Let's say we are trying to solve min ||A(X; w) — y||* with

Let us refer to J(w) =V h(X;w) € R 35 the Jacobian of the predictions

Note that again , ,
| VoLow) |7 = || TG wy =y || 7 = 44
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Hal that is the again PL condition (assuming L* = 0) with u = 44_. (X! X)

min



Nonlinear least squares

. Let's say we are trying to solve min ||A(X; w) — y||* with GD.
w
e The gradient of the loss is equal to V ||A(X; w) — y||? = [V, h(X; w)](R(X; w) — y)

o letusrefertoJ(w) =V h(X;w) € R a5 the Jacobian of the predictions

* Note that again i ,
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 Hal that is the again PL condition (assuming L* = 0) with u = 41_. (X! X)

min

Lemma

Non-linear least squares where min rank(J(w(w)) = n are PL in #'
WEeW
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Nonlinear least squares

. Let’s say we are trying to solve min ||A(X; w) — y||* with GD
w
e The gradient of the loss is equal to V ||A(X; w) — y||? = [V, h(X; w)](R(X; w) — y)

o letusrefertoJ(w) =V h(X;w) € R 35 the Jacobian of the predictions

* Note that again
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min

Hal that is the again PL condition (assuming L* = 0) with u = 44_. (X' X)

min

full-rank Jacobian = all

Lemma: local minima are global

Non-linear least squares where min rank(J(w(w)) = n are PL in #'
WEW

Most modern DL theory work tries to show that the above Is iIndeed the case




Pl In Neural Networks!



No bad local minima almost always!

No bad local minima: Data independent training
error guarantees for multilayer neural networks
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Theorem (informal):
-or |-hidden layer nets rank(J(w)) = n almost surely for leaky-RelLU networks, if dy - dy > n
-or L-hidden layer nets rank(J(w)) = n a.s., if params. of last layer > n
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Most modern DL theory work tries to show that the above Is iIndeed the case




More examples



| -layer linear Neural Networks

* Let us assume we have a |-layer linear network.

. he

| V..Low) || = 42

. 1 he Jacobian is equal to J(w) =V, A(W, x) = [ 5

orediction of this network is given as i(W; x) = (v, Wx) @

assume output edges

are all fixed

reminder:

W) Iw)) || hXw) =y |

min

ViX; ViXy ... VX

= de)(n

kal VkXZ cen kan

*Note that J(w) = v @ X and we know that rank(J(w)) = rank(v) - rank(X) = rank(X)

*Hence, If the matrix of data points is full rank n, then the cost function i1s PL.



| -layer Neural Networks, general activation

Let us assume we have a |-layer linear network

he prediction of this network is given as h(W; x) = (v, o(Wx))

% assume output edges
are all fixed




| -layer Neural Networks, general activation

Let us assume we have a |-layer linear network
. he prediction of this network is given as h(W; x) = (v, 6(Wx))

assume output edges
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| -layer Neural Networks, general activation

* Let us assume we have a |-layer linear network
. he prediction of this network is given as h(W; x) = (v, 6(Wx))

assume output edges

are all fixed
reminder:

W) Iw)) || hXw) =y |

min

| V..Low) || = 42

vio ((w,x) - X1 »o'((w, X)) - X, ... o' ({w, x,)) - X,
The Jacobian is equal to J(w) = - -

Vo (W, X)) - X; Vo' (Wi, X)) - Xy ... vio'({w, X)) - X,



| -layer Neural Networks, general activation

* Let us assume we have a |-layer linear network
. he prediction of this network is given as h(W; x) = (v, 6(Wx))

assume output edges

are all fixed
reminder:

| Vo Low) || * 2 4in@ 0 Tw) || X w) =y |

min

vio ((w,x) - X1 »o'((w, X)) - X, ... o' ({w, x,)) - X,
The Jacobian is equal to J(w) = - -

Vo (W, X)) - X; Vo' (Wi, X)) - Xy ... vio'({w, X)) - X,

Note rank(J(w)) = n if the rank of the data matrix is n.



| -layer Neural Networks, general activation

* Let us assume we have a |-layer linear network

. he

| V..Low) || = 42

The Jacobian is equal to J(w) =

orediction of this network is given as h(W; x) = (v, 6(Wx))

assume output edges

are all fixed
reminder:

W) Iw)) || hXw) =y |

min

V1o ((wy, X)) - xp o' ((w, X)) - Xy oo o' ((wy, X)) - X,

' : this would again imply

that all local minima =
olobal, but speed of

Vo (W, X)) - X; Vo' (Wi, X)) - Xy ... vio'({w, X)) - X,

Note rank(J(w)) = n if the rank of the data matrix is n. convergence open



What it we only trained the last layer?



| -layer Neural Networks

Let us assume we have a |-layer linear network

% Assume Input layer Is
random



| -layer Neural Networks

Let us assume we have a |-layer linear network

% Assume Input layer Is
random

_Note that min Z ((v, o(Wx,)) — yl-)z s equivalent to min ||Qv — y||* where O = G(le) . G(Wxn)]

Vv , Vv
l



| -layer Neural Networks

* Let us assume we have a |-layer linear network

% Assume Input layer Is
random

_Note that min Z ((v, o(Wx,)) — yl-)z s equivalent to min ||Qv — y||* where O = [G(le) G(Wxn)]

Vv , Vv

l
* Training the last layer is a CONVEX problem! Can always fit perfectly as long as Q is full rank



s Q full rank!?

« Reminder: Q) = la(le) G(Wxn)]. Note that rank(Q) = rank(QQ") and that

k
[QQT]Z',]' = (o(Wx)), U(ij» — Z o(WyX;) - U(szj)
[=1

* What would happen it we took the number of parameters to infinity?

&
k D 0(wx) - o(wix) — E,[o(wx) - o(wx)] = K3

[=1

Theorem (Du et al);

Moreover, K”

-or RelLu networks K*° is ful

s very close to K (hence s
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~ spectral properties) for polynomia
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| -layer Neural Networks

* Let us assume we have a |-layer linear network

% Assume Input layer Is
random

_Note that min Z ((v, o(Wx,)) — yl-)z s equivalent to min ||Qv — y||* where O = [G(le) G(Wxn)]

Vv , Vv

l
* Training the last layer is a CONVEX problem! Can always fit perfectly as long as Q is full rank (true for large
enough overparameterization and full rank inputs)

Training the last layer, not very interesting?

Seems that It doesn't capture much of the non-convex nature of DL!



| -layer Neural Networks

* Let us assume we have a |-layer linear network

Assume all but last

layers are random

.Note that min Z ((v, h(W;x)) — yi)z s equivalent to min [|Qv — y||? where O = [h(w;xl) h(w;xn)]

Vv ) Vv

l
* [raining the last layer 1s a CONVEX problem no matter how deep the net is!)

Training the last layer, not very interesting?

Seems that It doesn't capture much of the non-convex nature of DL!



Back to training all the layers



[ azy training for large overparameterization

Many recent works show that If the overparameterization i1s VERY large, then
h(w; x) = h(wy; x) + (W —wy, V, ,h(w; x))



[ azy training for large overparameterization

* Many recent works show that if the overparameterization 1s VERY large, then
h(w; x) = h(wy; x) + (W —wy, V, ,h(w; x))

o Specifically, the network behaves like a linear classifier and the residual error follows the following
dynamics

y — h(wi; X) = (I, — yG(k)(y — h(w;; X))
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[ azy training for large overparameterization

Many recent works show that If the overparameterization i1s VERY large, then
h(w; x) = h(wy; x) + (W —wy, V, ,h(w; x))

Specifically, the network behaves like a linear classifier and the residual error follows the following
dynamics

y —h(wi; X) = ([, — yG(k)(y — h(wy; X))
where G(k) = J(wk)TJ(wk)

When the overparameterization is large then ||G(k) — G(0)|| < €.

Moreover G(0) is shown to have a non-zero minimum eigenvalue, so that
ly — h(wi; X)|| S (1 - ;//ln)kHy — h(wy; X)|



[ azy training for large overparameterization

‘heorem (

)
2)
3)
4)

Du et al):
For width = O(poly(n)) then the loss function becomes PL around the initial set of weights.
GD doesn't move far from Init even If run for ever.
OPT Is close to Int
GD converges in poly-time to OPT.

For width = O(poly(n)) then the NNs+squared loss = PL close to init




Current theoretical SOTA



Subquadratic Overparameterization for
Shallow Neural Networks

Chaehwan Song'* Ali Ramezani-Kebrya'*

Thomas Pethick! Armin Eftekhari?f Volkan Cevher!

something odd..

Table 1: Scaling with the number of training data in the overparameterization regime. QL=quadratic loss,
CLL=convex and Lipschitz loss, SD=separable data.

Depth Algorithm Setting Activation  Scaling Reference
2 GD on layer 1 QL ReLLU Q(n?) Oymak and Soltanolkotabi [38]
L GD on layer L CLL ReLLU Q(n) Kawaguchi and Huang [21]
2 GD SD ReLU Q(n?) Song and Yang [39]
2 GD SDand QL  ReLU Q(nb) Du et al. [12]
L GD SD and QL ReLU Q(n3L?) Zou and Gu [44]
2 GD QL Smooth Q(nz) This paper



A curious observation on fitting the data



Small ReLLU networks are powerful memorizers:
a tight analysis of memorization capacity

Chulhee Yun Suvrit Sra Ali Jadbabaie
MIT MIT MIT
Cambridge, MA 02139 Cambridge, MA 02139 Cambridge, MA 02139
chulheey@mit.edu suvrit@mit.edu jadbabai@mit.edu

Theorem:

Any data set of size n can be memorized by a 3-layer ReLU neural network with O(n) weights.

These constructions can be made In linear time.Yet SGD on the same arch

needs so much more larger overarm. Why!!



But somehow SGD does more than just that..



Rethinking Generalization [Zhang et al. ICLR17]

2.5 : l . l 4.0 : , ] : 1.0
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(a) learning curves (b) convergence slowdown (c) generalization error growth

Figure 1: Fitting random labels and random pixels on CIFAR10. (a) shows the training loss of
various experiment settings decaying with the training steps. (b) shows the relative convergence
time with different label corruption ratio. (c) shows the test error (also the generalization error since
training error 1s 0) under different label corruptions.

o Overparameterized, SGD-trained models :
. Can fit even completely random labels (i.e., huge capacity)
2. Yet, generalize well

How can this be!




Possible Explanations

* Maybe every model that fits the training data generalizes (no bad global minima)

* Maybe SGD “can avoid’ bad global minima (implicit regularization)!

More on this next time.
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