
ECE826 Lecture 10:

Guarantees for fitting NNs with GD

Contents

• Going deeper on PL

• No bad local minima

• It’s all about the Jacobian

• Brief overview of NTK/large overparameterization

Minimizing the Empirical Risk
• The empirical cost function that we have access to

• Question: Can we approximate the solution to this minimization? If so
how fast?

• The answer must depend on:  
 1) , the sample size 
 2) , the hypothesis class and loss function 
 3) , the data distribution

 4) the optimization algorithm that outputs our classifier

n
ℋ
𝒟

min
h∈ℋ (RS[h] =

1
n

n

∑
i=1

ℓ(h(xi); yi))

Last time: PL is good

Proof:

Theorem

Let be a -smooth function with -bounded stoch. gradients (i.e.,). Then, the gradients of
SGD with step-size satisfy

f(w) β L 𝔼i∥∇fi(w)∥ ≤ L
γ =

R
βL2T

min
k∈[T]

𝔼∥∇f(wk)∥2 ≤ 2
RβL2

T

f(wk+1) − f(wk) − ⟨∇f(wk), wk+1 − wk⟩ ≤
β
2

∥wk − wk+1∥2

⟹ 𝔼f(wk+1) − 𝔼f(wk) + γ⟨∇f(wk), ∇fsk
(wk)⟩ ≤

β
2

∥γ∇fsk
(wk)∥2

⟹ 𝔼f(wk+1) − 𝔼f(wk) + γ𝔼∥∇f(wk)∥2 ≤
βγ2

2
𝔼∥∇fsk

(wk)∥2

⟹ 𝔼∥∇f(wk)∥2 ≤
𝔼f(wk+1) − 𝔼f(wk)

γ
+

γL2β
2

⟹ min
k

𝔼∥∇f(wk)∥2 ≤
1
T

T

∑
k=1

𝔼∥∇f(wk)∥2 ≤
𝔼f(w1) − f(w0)

γT
+

γL2β
2T

This is a very slow rate, that is very conservative. Makes sense!

It also doesn’t tell us anything about the quality of the solution that SGD finds

SGD/GD on general non convex functions?

GD on Polyak-Łojasiewicz functions
Theorem

Let be a -smooth, -PL function (i.e., .

Then, GD with with step-size satisfies

f(w) β μ ∇wL(w)
2

≥ μ(L(w) − L*)

γ =
1
L

f(wk) − f* ≤ (1 −
μ
β)

k

(f(w0) − f*)
f(wk+1) − f(wk) ≤ ⟨∇f(wk), wk+1 − wk⟩ +

β
2

∥wk − wk+1∥2

≤ − γ∥∇f(wk)∥2 +
β

2β2
∥∇f(wk)∥2

≤ −
1
β

∥∇f(wk)∥2 ≤ −
μ
β

(f(wk) − f*)

⟹ f(wk+1) − f(wk) − f* ≤ −
1
β

∥∇f(wk)∥2 ≤ −
μ
β

(f(wk) − f*) − f*

f(wk+1) − f* ≤ −
μ
β

(f(wk) − f*) − (f* − f(wk))

f(wk+1) − f* ≤ (1 −
μ
β)(f(wk) − f*)

much faster rate, when is PL satisfied?

Proof:

PL-like conditions hold in neighborhoods around initialization/optima.

PL in Nonlinear Least Squares

Nonlinear least squares
• Let’s say we are trying to solve with GD.

• The gradient of the loss is equal to

min
w

∥h(X; w) − y∥2

∇w∥h(X; w) − y∥2 = [∇wh(X; w)](h(X; w) − y)

Nonlinear least squares
• Let’s say we are trying to solve with GD.

• The gradient of the loss is equal to

• Let us refer to as the Jacobian of the predictions

• Note that again

min
w

∥h(X; w) − y∥2

∇w∥h(X; w) − y∥2 = [∇wh(X; w)](h(X; w) − y)

J(w) = ∇wh(X; w) ∈ ℝd×n

∇wL(w)
2

= J(w)(h(X; w) − y)
2

≥ 4λmin(J(w)TJ(w)) h(X; w) − y
2

Nonlinear least squares
• Let’s say we are trying to solve with GD.

• The gradient of the loss is equal to

• Let us refer to as the Jacobian of the predictions

• Note that again

• Ha! that is the again PL condition (assuming) with

min
w

∥h(X; w) − y∥2

∇w∥h(X; w) − y∥2 = [∇wh(X; w)](h(X; w) − y)

J(w) = ∇wh(X; w) ∈ ℝd×n

∇wL(w)
2

= J(w)(h(X; w) − y)
2

≥ 4λmin(J(w)TJ(w)) h(X; w) − y
2

L* = 0 μ = 4λmin(XTX)

Lemma:

Non-linear least squares where are PL in min
w∈𝒲

rank(J(w(w)) = n 𝒲

Nonlinear least squares
• Let’s say we are trying to solve with GD.

• The gradient of the loss is equal to

• Let us refer to as the Jacobian of the predictions

• Note that again

• Ha! that is the again PL condition (assuming) with

min
w

∥h(X; w) − y∥2

∇w∥h(X; w) − y∥2 = [∇wh(X; w)](h(X; w) − y)

J(w) = ∇wh(X; w) ∈ ℝd×n

∇wL(w)
2

= J(w)(h(X; w) − y)
2

≥ 4λmin(J(w)TJ(w)) h(X; w) − y
2

L* = 0 μ = 4λmin(XTX)

Lemma:

Non-linear least squares where are PL in min
w∈𝒲

rank(J(w(w)) = n 𝒲

Nonlinear least squares
• Let’s say we are trying to solve with GD.

• The gradient of the loss is equal to

• Let us refer to as the Jacobian of the predictions

• Note that again

• Ha! that is the again PL condition (assuming) with

min
w

∥h(X; w) − y∥2

∇w∥h(X; w) − y∥2 = [∇wh(X; w)](h(X; w) − y)

J(w) = ∇wh(X; w) ∈ ℝd×n

∇wL(w)
2

= J(w)(h(X; w) − y)
2

≥ 4λmin(J(w)TJ(w)) h(X; w) − y
2

L* = 0 μ = 4λmin(XTX) full-rank Jacobian = all
local minima are global

Lemma:

Non-linear least squares where are PL in min
w∈𝒲

rank(J(w(w)) = n 𝒲

Nonlinear least squares
• Let’s say we are trying to solve with GD.

• The gradient of the loss is equal to

• Let us refer to as the Jacobian of the predictions

• Note that again

• Ha! that is the again PL condition (assuming) with

min
w

∥h(X; w) − y∥2

∇w∥h(X; w) − y∥2 = [∇wh(X; w)](h(X; w) − y)

J(w) = ∇wh(X; w) ∈ ℝd×n

∇wL(w)
2

= J(w)(h(X; w) − y)
2

≥ 4λmin(J(w)TJ(w)) h(X; w) − y
2

L* = 0 μ = 4λmin(XTX)

Most modern DL theory work tries to show that the above is indeed the case

full-rank Jacobian = all
local minima are global

PL in Neural Networks?

No bad local minima almost always?

Theorem (informal):
For 1-hidden layer nets almost surely for leaky-ReLU networks, if
For L-hidden layer nets a.s., if params. of last layer

rank(J(w)) = n d0 ⋅ d1 ≥ n
rank(J(w)) = n ≥ n

No bad local minima almost always?

d0 d1

Theorem (informal):
For 1-hidden layer nets almost surely for leaky-ReLU networks, if
For L-hidden layer nets a.s., if params. of last layer

rank(J(w)) = n d0 ⋅ d1 ≥ n
rank(J(w)) = n ≥ n

No bad local minima almost always?

Most modern DL theory work tries to show that the above is indeed the case

d0 d1

More examples

1-layer linear Neural Networks
• Let us assume we have a 1-layer linear network.
• The prediction of this network is given as

•The Jacobian is equal to

•Note that and we know that

•Hence, if the matrix of data points is full rank , then the cost function is PL.

h(W; x) = ⟨v, Wx⟩

J(w) = ∇wh(W, x) = [
v1x1 v1x2 … v1xn

⋮ ⋮ … ⋮
vkx1 vkx2 … vkxn

] ∈ ℝkd×n

J(w) = v ⊗ X rank(J(w)) = rank(v) ⋅ rank(X) = rank(X)

n

σ(x) = x

assume output edges
are all fixed

reminder:
∇wL(w)

2
≥ 4λmin(J(w)TJ(w)) h(X; w) − y

2

1-layer Neural Networks, general activation
• Let us assume we have a 1-layer linear network
• The prediction of this network is given as h(W; x) = ⟨v, σ(Wx)⟩

assume output edges
are all fixed

σ(x), s . t . |σ′￼(x) | ≥ ρ

1-layer Neural Networks, general activation
• Let us assume we have a 1-layer linear network
• The prediction of this network is given as h(W; x) = ⟨v, σ(Wx)⟩

assume output edges
are all fixed

reminder:
∇wL(w)

2
≥ 4λmin(J(w)TJ(w)) h(X; w) − y

2

σ(x), s . t . |σ′￼(x) | ≥ ρ

1-layer Neural Networks, general activation
• Let us assume we have a 1-layer linear network
• The prediction of this network is given as

The Jacobian is equal to

h(W; x) = ⟨v, σ(Wx)⟩

J(w) = [
v1σ′￼(⟨w1, x1⟩) ⋅ x1 v2σ′￼(⟨w1, x2⟩) ⋅ x2 … vkσ′￼(⟨w1, xn⟩) ⋅ xn

⋮ ⋮ … ⋮
v1σ′￼(⟨wk, x1⟩) ⋅ x1 v2σ′￼(⟨wk, x2⟩) ⋅ x2 … vkσ′￼(⟨wk, xn⟩) ⋅ xn

]

assume output edges
are all fixed

reminder:
∇wL(w)

2
≥ 4λmin(J(w)TJ(w)) h(X; w) − y

2

σ(x), s . t . |σ′￼(x) | ≥ ρ

1-layer Neural Networks, general activation
• Let us assume we have a 1-layer linear network
• The prediction of this network is given as

The Jacobian is equal to

Note if the rank of the data matrix is .

h(W; x) = ⟨v, σ(Wx)⟩

J(w) = [
v1σ′￼(⟨w1, x1⟩) ⋅ x1 v2σ′￼(⟨w1, x2⟩) ⋅ x2 … vkσ′￼(⟨w1, xn⟩) ⋅ xn

⋮ ⋮ … ⋮
v1σ′￼(⟨wk, x1⟩) ⋅ x1 v2σ′￼(⟨wk, x2⟩) ⋅ x2 … vkσ′￼(⟨wk, xn⟩) ⋅ xn

]
rank(J(w)) = n n

assume output edges
are all fixed

reminder:
∇wL(w)

2
≥ 4λmin(J(w)TJ(w)) h(X; w) − y

2

σ(x), s . t . |σ′￼(x) | ≥ ρ

1-layer Neural Networks, general activation
• Let us assume we have a 1-layer linear network
• The prediction of this network is given as

The Jacobian is equal to

Note if the rank of the data matrix is .

h(W; x) = ⟨v, σ(Wx)⟩

J(w) = [
v1σ′￼(⟨w1, x1⟩) ⋅ x1 v2σ′￼(⟨w1, x2⟩) ⋅ x2 … vkσ′￼(⟨w1, xn⟩) ⋅ xn

⋮ ⋮ … ⋮
v1σ′￼(⟨wk, x1⟩) ⋅ x1 v2σ′￼(⟨wk, x2⟩) ⋅ x2 … vkσ′￼(⟨wk, xn⟩) ⋅ xn

]
rank(J(w)) = n n

assume output edges
are all fixed

reminder:
∇wL(w)

2
≥ 4λmin(J(w)TJ(w)) h(X; w) − y

2

σ(x), s . t . |σ′￼(x) | ≥ ρ

this would again imply
that all local minima =
global, but speed of
convergence open

What if we only trained the last layer?

• Let us assume we have a 1-layer linear network

1-layer Neural Networks

σ(x) = 1x≥0

Assume input layer is
random

• Let us assume we have a 1-layer linear network

•Note that is equivalent to where min
v ∑

i
(⟨v, σ(Wxi)⟩ − yi)2 min

v
∥Qv − y∥2 Q = [σ(Wx1) … σ(Wxn)]

1-layer Neural Networks

σ(x) = 1x≥0

Assume input layer is
random

• Let us assume we have a 1-layer linear network

•Note that is equivalent to where

•Training the last layer is a CONVEX problem! Can always fit perfectly as long as is full rank

min
v ∑

i
(⟨v, σ(Wxi)⟩ − yi)2 min

v
∥Qv − y∥2 Q = [σ(Wx1) … σ(Wxn)]

Q

1-layer Neural Networks

σ(x) = 1x≥0

Assume input layer is
random

• Reminder: . Note that and that

• What would happen if we took the number of parameters to infinity?

Q = [σ(Wx1) … σ(Wxn)] rank(Q) = rank(QQT)

[QQT]i,j = ⟨σ(Wxi), σ(Wxj)⟩ =
k

∑
l=1

σ(wlxi) ⋅ σ(wlxj)

1
k

k

∑
l=1

σ(wlxi) ⋅ σ(wlxj) ⟶ Ew[σ(wxi) ⋅ σ(wxj)] = K∞
i,j

Is Q full rank?

Theorem (Du et al):
For ReLu networks is full-rank as long as two input points are not parallel.

Moreover, is very close to (hence similar spectral properties) for polynomial overparameterization.
K∞

Kp K∞

• Let us assume we have a 1-layer linear network

•Note that is equivalent to where

•Training the last layer is a CONVEX problem! Can always fit perfectly as long as is full rank (true for large
enough overparameterization and full rank inputs)

min
v ∑

i
(⟨v, σ(Wxi)⟩ − yi)2 min

v
∥Qv − y∥2 Q = [σ(Wx1) … σ(Wxn)]

Q

1-layer Neural Networks

σ(x) = 1x≥0

Assume input layer is
random

Training the last layer, not very interesting?
Seems that it doesn’t capture much of the non-convex nature of DL?

• Let us assume we have a 1-layer linear network

•Note that is equivalent to where

•Training the last layer is a CONVEX problem no matter how deep the net is!)

min
v ∑

i
(⟨v, h(W; x)⟩ − yi)2 min

v
∥Qv − y∥2 Q = [h(w; x1) … h(w; xn)]

L-layer Neural Networks

σ(x) = 1x≥0

Assume all but last
layers are random

Training the last layer, not very interesting?
Seems that it doesn’t capture much of the non-convex nature of DL?

Back to training all the layers

Lazy training for large overparameterization
• Many recent works show that if the overparameterization is VERY large, then

 h(w; x) ≈ h(w0; x) + ⟨w − w0, ∇wh(wt; x)⟩

Lazy training for large overparameterization
• Many recent works show that if the overparameterization is VERY large, then

• Specifically, the network behaves like a linear classifier and the residual error follows the following
dynamics

h(w; x) ≈ h(w0; x) + ⟨w − w0, ∇wh(wt; x)⟩

y − h(wk; X) = (In − γG(k))(y − h(wk; X))

Lazy training for large overparameterization
• Many recent works show that if the overparameterization is VERY large, then

• Specifically, the network behaves like a linear classifier and the residual error follows the following
dynamics

• where

h(w; x) ≈ h(w0; x) + ⟨w − w0, ∇wh(wt; x)⟩

y − h(wk; X) = (In − γG(k))(y − h(wk; X))
G(k) = J(wk)TJ(wk)

Lazy training for large overparameterization
• Many recent works show that if the overparameterization is VERY large, then

• Specifically, the network behaves like a linear classifier and the residual error follows the following
dynamics

• where

• When the overparameterization is large then .

h(w; x) ≈ h(w0; x) + ⟨w − w0, ∇wh(wt; x)⟩

y − h(wk; X) = (In − γG(k))(y − h(wk; X))
G(k) = J(wk)TJ(wk)

∥G(k) − G(0)∥ < ϵ

Lazy training for large overparameterization
• Many recent works show that if the overparameterization is VERY large, then

• Specifically, the network behaves like a linear classifier and the residual error follows the following
dynamics

• where

• When the overparameterization is large then .

• Moreover is shown to have a non-zero minimum eigenvalue, so that

h(w; x) ≈ h(w0; x) + ⟨w − w0, ∇wh(wt; x)⟩

y − h(wk; X) = (In − γG(k))(y − h(wk; X))
G(k) = J(wk)TJ(wk)

∥G(k) − G(0)∥ < ϵ

G(0)
∥y − h(wk; X)∥ ⪅ (1 − γλn)k∥y − h(wk; X)∥

Lazy training for large overparameterization

For width = then the NNs+squared loss = PL close to init O(poly(n))

Theorem (Du et al):
1) For width = then the loss function becomes PL around the initial set of weights.
2) GD doesn’t move far from init even if run for ever.
3) OPT is close to int
4) GD converges in poly-time to OPT.

O(poly(n))

Current theoretical SOTA

something odd..

A curious observation on fitting the data

Theorem:

Any data set of size can be memorized by a 3-layer ReLU neural network with weights.n O(n)

These constructions can be made in linear time. Yet SGD on the same arch
needs so much more larger overarm. Why??

But somehow SGD does more than just that..

• Overparameterized, SGD-trained models :
1. Can fit even completely random labels (i.e., huge capacity)
2. Yet, generalize well

Open Question: How can this be?

Rethinking Generalization [Zhang et al. ICLR17]

Possible Explanations

• Maybe every model that fits the training data generalizes (no bad global minima)

• Maybe SGD “can avoid” bad global minima (implicit regularization)?

More on this next time.

Open Problem for projects

• Understanding the effects of overparameterization

• Deep vs wide networks (width helps in theory, depth in practice).

• Understanding when/if memorization hurts

Soudry, D. and Carmon, Y., 2016. No bad local minima: Data independent training error guarantees for multilayer neural networks. arXiv preprint
arXiv:1605.08361.
https://arxiv.org/pdf/1605.08361

Du, S.S., Zhai, X., Poczos, B. and Singh, A., 2018. Gradient descent provably optimizes over-parameterized neural networks. ICLR 2019
https://arxiv.org/pdf/1810.02054

Allen-Zhu, Z., Li, Y. and Song, Z., 2019, May. A convergence theory for deep learning via over-parameterization. In International Conference on
Machine Learning (pp. 242-252). PMLR.
http://proceedings.mlr.press/v97/allen-zhu19a/allen-zhu19a.pdf

Du, S., Lee, J., Li, H., Wang, L. and Zhai, X., 2019, May. Gradient descent finds global minima of deep neural networks. In International conference on
machine learning (pp. 1675-1685). PMLR.
http://proceedings.mlr.press/v97/du19c/du19c.pdf

Liu, C., Zhu, L. and Belkin, M., 2022. Loss landscapes and optimization in over-parameterized non-linear systems and neural networks. Applied and
Computational Harmonic Analysis.
Vancouver
https://arxiv.org/abs/2003.00307

Oymak, S. and Soltanolkotabi, M., 2019, May. Overparameterized nonlinear learning: Gradient descent takes the shortest path?. In International
Conference on Machine Learning (pp. 4951-4960). PMLR.
http://proceedings.mlr.press/v97/oymak19a/oymak19a.pdf

reading list

