
ECE826 Lecture 10:

Guarantees for fitting NNs with GD
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• Going deeper on PL 
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• It’s all about the Jacobian

• Brief overview of NTK/large overparameterization



Minimizing the Empirical Risk
• The empirical cost function that we have access to

• Question: Can we approximate the solution to this minimization? If so 
how fast?

• The answer must depend on:  
        1) , the sample size 
        2) , the hypothesis class and loss function 
        3) , the data distribution

           4) the optimization algorithm that outputs our classifier
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Last time: PL is good



Proof:

Theorem

Let  be a -smooth function with -bounded stoch. gradients (i.e., ). Then, the gradients of 
SGD with step-size  satisfy
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This is a very slow rate, that is very conservative. Makes sense!

It also doesn’t tell us anything about the quality of the solution that SGD finds

SGD/GD on general non convex functions?



GD on Polyak-Łojasiewicz functions
Theorem

Let  be a -smooth, -PL function (i.e., . 

Then, GD with with step-size  satisfies
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much faster rate, when is PL satisfied?

Proof:





PL-like conditions hold in neighborhoods around initialization/optima.



PL in Nonlinear Least Squares



Nonlinear least squares
• Let’s say we are trying to solve  with GD.

• The gradient of the loss is equal to 

min
w

∥h(X; w) − y∥2

∇w∥h(X; w) − y∥2 = [∇wh(X; w)](h(X; w) − y)



Nonlinear least squares
• Let’s say we are trying to solve  with GD.

• The gradient of the loss is equal to 

• Let us refer to  as the Jacobian of the predictions

• Note that again
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Nonlinear least squares
• Let’s say we are trying to solve  with GD.

• The gradient of the loss is equal to 

• Let us refer to  as the Jacobian of the predictions

• Note that again

• Ha! that is the again PL condition (assuming ) with 

min
w

∥h(X; w) − y∥2

∇w∥h(X; w) − y∥2 = [∇wh(X; w)](h(X; w) − y)

J(w) = ∇wh(X; w) ∈ ℝd×n

∇wL(w)
2

= J(w)(h(X; w) − y)
2

≥ 4λmin(J(w)TJ(w)) h(X; w) − y
2

L* = 0 μ = 4λmin(XTX)



Lemma:

Non-linear least squares where  are PL in min
w∈𝒲

rank(J(w(w)) = n 𝒲
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Nonlinear least squares
• Let’s say we are trying to solve  with GD.

• The gradient of the loss is equal to 
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Most modern DL theory work tries to show that the above is indeed the case

full-rank Jacobian = all 
local minima are global



PL in Neural Networks?



No bad local minima almost always?



Theorem (informal):
For 1-hidden layer nets  almost surely for leaky-ReLU networks, if 
For L-hidden layer nets  a.s., if params. of last layer

rank(J(w)) = n d0 ⋅ d1 ≥ n
rank(J(w)) = n ≥ n

No bad local minima almost always?

d0 d1
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More examples



1-layer linear Neural Networks
• Let us assume we have a 1-layer linear network.
• The prediction of this network is given as 

•The Jacobian is equal to 

•Note that  and we know that 

•Hence, if the matrix of data points is full rank , then the cost function is PL.

h(W; x) = ⟨v, Wx⟩

J(w) = ∇wh(W, x) = [
v1x1 v1x2 … v1xn

⋮ ⋮ … ⋮
vkx1 vkx2 … vkxn

] ∈ ℝkd×n

J(w) = v ⊗ X rank(J(w)) = rank(v) ⋅ rank(X) = rank(X)

n

σ(x) = x

assume output edges 
are all fixed

reminder: 
∇wL(w)

2
≥ 4λmin(J(w)TJ(w)) h(X; w) − y

2



1-layer Neural Networks, general activation
• Let us assume we have a 1-layer linear network
• The prediction of this network is given as h(W; x) = ⟨v, σ(Wx)⟩

assume output edges 
are all fixed

σ(x), s . t . |σ′￼(x) | ≥ ρ
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1-layer Neural Networks, general activation
• Let us assume we have a 1-layer linear network
• The prediction of this network is given as 

The Jacobian is equal to 

Note  if the rank of the data matrix is .
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are all fixed
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this would again imply 
that all local minima = 
global, but speed of 
convergence open



What if we only trained the last layer?



• Let us assume we have a 1-layer linear network

1-layer Neural Networks

σ(x) = 1x≥0

Assume input layer is 
random



• Let us assume we have a 1-layer linear network

•Note that  is equivalent to  where min
v ∑

i
(⟨v, σ(Wxi)⟩ − yi)2 min

v
∥Qv − y∥2 Q = [σ(Wx1) … σ(Wxn)]

1-layer Neural Networks

σ(x) = 1x≥0

Assume input layer is 
random



• Let us assume we have a 1-layer linear network

•Note that  is equivalent to  where 

•Training the last layer is a CONVEX problem! Can always fit perfectly as long as  is full rank
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v
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1-layer Neural Networks

σ(x) = 1x≥0

Assume input layer is 
random



• Reminder: . Note that  and that

 

• What would happen if we took the number of parameters to infinity?
 

Q = [σ(Wx1) … σ(Wxn)] rank(Q) = rank(QQT)

[QQT]i,j = ⟨σ(Wxi), σ(Wxj)⟩ =
k

∑
l=1

σ(wlxi) ⋅ σ(wlxj)

1
k

k

∑
l=1

σ(wlxi) ⋅ σ(wlxj) ⟶ Ew[σ(wxi) ⋅ σ(wxj)] = K∞
i,j

Is Q full rank?

Theorem (Du et al):
For ReLu networks  is full-rank as long as two input points are not parallel.

Moreover,  is very close to  (hence similar spectral properties) for polynomial overparameterization.
K∞

Kp K∞



• Let us assume we have a 1-layer linear network

•Note that  is equivalent to  where 

•Training the last layer is a CONVEX problem! Can always fit perfectly as long as  is full rank (true for large 
enough overparameterization and full rank inputs)

min
v ∑

i
(⟨v, σ(Wxi)⟩ − yi)2 min

v
∥Qv − y∥2 Q = [σ(Wx1) … σ(Wxn)]

Q

1-layer Neural Networks

σ(x) = 1x≥0

Assume input layer is 
random

Training the last layer, not very interesting?
Seems that it doesn’t capture much of the non-convex nature of DL?



• Let us assume we have a 1-layer linear network

•Note that  is equivalent to  where 

•Training the last layer is a CONVEX problem no matter how deep the net is!)

min
v ∑

i
(⟨v, h(W; x)⟩ − yi)2 min

v
∥Qv − y∥2 Q = [h(w; x1) … h(w; xn)]

L-layer Neural Networks

σ(x) = 1x≥0

Assume all but last 
layers are random

Training the last layer, not very interesting?
Seems that it doesn’t capture much of the non-convex nature of DL?



Back to training all the layers



Lazy training for large overparameterization
• Many recent works show that if the overparameterization is VERY large, then 

 h(w; x) ≈ h(w0; x) + ⟨w − w0, ∇wh(wt; x)⟩



Lazy training for large overparameterization
• Many recent works show that if the overparameterization is VERY large, then 

 

• Specifically, the network behaves like a linear classifier and the residual error follows the following 
dynamics

 

h(w; x) ≈ h(w0; x) + ⟨w − w0, ∇wh(wt; x)⟩

y − h(wk; X) = (In − γG(k))(y − h(wk; X))
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Lazy training for large overparameterization
• Many recent works show that if the overparameterization is VERY large, then 

 

• Specifically, the network behaves like a linear classifier and the residual error follows the following 
dynamics

 
• where 

• When the overparameterization is large then .

h(w; x) ≈ h(w0; x) + ⟨w − w0, ∇wh(wt; x)⟩

y − h(wk; X) = (In − γG(k))(y − h(wk; X))
G(k) = J(wk)TJ(wk)

∥G(k) − G(0)∥ < ϵ



Lazy training for large overparameterization
• Many recent works show that if the overparameterization is VERY large, then 

 

• Specifically, the network behaves like a linear classifier and the residual error follows the following 
dynamics

 
• where 

• When the overparameterization is large then .

• Moreover  is shown to have a non-zero minimum eigenvalue, so that 
 

h(w; x) ≈ h(w0; x) + ⟨w − w0, ∇wh(wt; x)⟩

y − h(wk; X) = (In − γG(k))(y − h(wk; X))
G(k) = J(wk)TJ(wk)

∥G(k) − G(0)∥ < ϵ

G(0)
∥y − h(wk; X)∥ ⪅ (1 − γλn)k∥y − h(wk; X)∥



Lazy training for large overparameterization

For width =  then the NNs+squared loss = PL close to init O(poly(n))

Theorem (Du et al):
1) For width =  then the loss function becomes PL around the initial set of weights. 
2) GD doesn’t move far from init even if run for ever. 
3) OPT is close to int
4) GD converges in poly-time to OPT.

O(poly(n))



Current theoretical SOTA



something odd..



A curious observation on fitting the data



Theorem:

Any data set of size  can be memorized by a 3-layer ReLU neural network with  weights.n O(n)

These constructions can be made in linear time. Yet SGD on the same arch 
needs so much more larger overarm. Why??



But somehow SGD does more than just that..



• Overparameterized, SGD-trained models : 
1. Can fit even completely random labels (i.e., huge capacity)
2. Yet, generalize well

Open Question: How can this be?

Rethinking Generalization [Zhang et al. ICLR17]



Possible Explanations

• Maybe every model that fits the training data generalizes (no bad global minima)

• Maybe SGD “can avoid” bad global minima (implicit regularization)? 

More on this next time.



Open Problem for projects

• Understanding the effects of overparameterization

• Deep vs wide networks (width helps in theory, depth in practice).

• Understanding when/if memorization hurts
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