
ECE 901: Large-scale Machine Learning and Optimization Spring 2018

Lecture 14 — March 8

Lecturer: Dimitris Papailiopoulos Scribe: Wen Xu, Jianfu Chen

Note: These lecture notes are still rough, and have only have been mildly proofread.

We discuss the performance and challenges of Hogwild! in this lecture. The lecture is
organized in the following parts(each part is discussed or analyzed in a subsection):

• Convergence of Hogwild!

• Open problems

• Reproducible Models

14.1 Convergence of Hogwild!

Stochastic Gradient Descent(SGD) is a popular algorithm to train a wide range of machine
learning models. In order to speed up the training, some researchers have proposed schemes
to parallelize SGD. Some require memory locking and synchronization while the one called
Hogwild! is lock-free and allows processors access to shared memory with the possibility
of overwriting each others work.

Many machine learning problems have a sparse setting. Examples are: matrix factoriza-
tion, matrix completion, graph cuts, graph or text classification, topic modeling, dropout
and so on. We define the hyperedge e to be the subset of variables that fe depends on. The
objective function we want to minimize is:

f(x) =
∑
e∈ε

fe(xe) (14.1)

As shown in Fig.14.1, each fei only depends on a small subset of {x1, x2, . . . , xd}, e.g.,
fe1 only depends on x1 and x2. The right part of this figure shows the conflict graph. Each
vertex in the graph represents an fei and there is an edge between any pair of vertices if and
only if these two functions depend on at least one common xi.

14.1.1 Hogwild!

Hogwild! runs parallel lock-free SGD without synchronization[2]. The algorithm is shown
as below.

14-1

ECE 901 Lecture 14 — March 8 Spring 2018

Figure 14.1: The function-variable and conflict graph for sparse functions.

Algorithm 1 Hogwild! update for individual processors

1: Sample function fi;
2: x = read shared memory;
3: g = −γ∇fi(x);
4: for v in the support of f do
5: xv ← xv + gV ;
6: end for

Hogwild! is one kind of asynchronous algorithm[1]. From the noisy view point, the
main idea is that:

Asynchronous(Algo.(INPUT) ≡ Serial(Algo.(INPUT +Noise))

We define Sk to be the k-th sampled data point. The fact is that cores do not read
“actual” iterate xk but “noisy” iterate x̂k. After T processed samples, the contents of RAM
are(atomic writes + commutativity):

x0 − γ∇fs0(x̂0)− · · · − γ∇fsT−1
(ˆxT−1)

This expression is just xT . And the first two components of this expression, i.e., x0 −
γ∇fs0(x̂0) is just x1. The algorithmic progress is captured by “phantom” iterates:

xk+1 = xk − γ∇fsk(x̂k)

Two main questions for the readers:

1. Where does the noise come from?

14-2

ECE 901 Lecture 14 — March 8 Spring 2018

2. How strong is it?

The questions are answered in the following subsection.

14.1.2 Convergence rate for noisy SGD and Hogwild!

We want to analyze noisy SGD:

xk+1 = xk − γ∇fsk(x̂k) (14.2)

To do elementary analysis, we can use m-strong convexity assumption on f :

E{‖xk+1 − x∗‖} ≤ (1− γm)E{‖xk − x∗‖}+ γ2E{‖∇fsk(x̂k)‖}
+2γmE{‖xk − x̂k‖}+ 2γE{〈xk − x̂k,∇fsk(x̂k)〉}

(14.3)

For simplicity, we denote 2γmE{‖xk − x̂k‖} as R1 and 2γE{〈xk − x̂k,∇fsk(x̂k)〉} as R2. By
simple Lemma, we know that if both items = O(γ2M2), noisy SGD gets same convergence
rates as SGD up to mulitiplicative constants, a.k.a., SGD robust to small perturbations. So,
is asynchronous noise small? To answer this question, we must first know how what causes
asynchronous noise. The answer is quite simple. It is the “noisy reads” of the coordinates
in the overlap of different fi. Asynchronous noise is combinatorial without any generative
model assumptions and coordinates in conflict can be as noisy as possible.

Now we analyze Eq.14.2. We make an important assumption: no more than τ samples
processed while a core is processing one. For examples, as shown in Fig.14.2, if τ = 3, while
1 is being processed no more than 3 updates occur.

Figure 14.2: Illustration of assumption.

Two important notes:

1. If si is done before sk is sampled: its gradient contribution is recorded in shared RAM,
when a thread starts working on sk.

2. If si overlaps in time with sk(i.e., the two samples are concurrently processed): its
gradient contribution is only partially recorded in shared RAM, when a thread starts
working on sk.

For each sample sk, any difference between x̂k and xk caused only by samples that
“overlap” with sk. Therefore, if si is sampled before sk, it might overlap with sk if and only

14-3

ECE 901 Lecture 14 — March 8 Spring 2018

if i ≥ k− τ ; if si is sampled after sk, it might overlap with sk if and only if i ≤ k+ τ . Hence
we have the following equation:

x̂k − xk =
k+τ∑

i=k−τ,i 6=k

γSki∇fsi(x̂i) (14.4)

where, Ski is diagonal with entries in {−1, 0, 1}. In Eq.14.3, ifR1 andR2 are inO(γ2E{‖∇fsk(x̂k)‖}),
noisy SGD gets same rates as SGD(up to multiplicative constants). The main things we need
to bound are:

γE{〈xk − x̂k,∇fsk(x̂k)〉} = γ2E〈
k+τ∑

i=k−τ,i 6=k

Ski∇fsi(x̂i),∇fsk(x̂k)〉 (14.5)

γE{‖xk − x̂k‖} = γ3E{‖
k+τ∑

i=k−τ,i6=k

Ski∇fsi(x̂i)‖2} (14.6)

We need the first one to be upper bounded by γ2M2; the second one also by γ2M2. For
Eq.14.5, asynchrony causes error if sampled grads overlap. The simple idea is that samples
might be concurrently processed, but they only “interfere” if they are talking to the same
variables. If the functions sampled share variables, then 〈∇fsi(x1),∇fsj(y2)〉 6= 0, which is
a bad event; If the functions sampled do not share variables, then 〈∇fsi(x1),∇fsj(y2)〉 = 0,
which is a good event. We now start to give an upper for Eq.14.5:

γ2〈
k+τ∑

i=k−τ,i 6=k

Ski∇fsi(x̂i),∇fsk(x̂k)〉 ≤ γ2|〈
k+τ∑

i=k−τ,i 6=k

Ski∇fsi(x̂i),∇fsk(x̂k)〉|

≤ γ2

k+τ∑
i=k−τ,i 6=k

‖∇fsi(x̂i)‖ ∗ ‖∇fsj(x̂j)‖ ∗ 1si∩sk 6=0

≤ γ2

k+τ∑
i=k−τ,i 6=k

1

2
(‖∇fsi(x̂i)‖2 + ‖∇fsj(x̂j)‖2) ∗ 1si∩sk 6=0

≤ γ2

k+τ∑
i=k−τ,i 6=k

M2 ∗ 1si∩sk 6=0

The first “≤” is due to the fact that a ≤ |a| for any a. The second “≤” is due to Cauchy-
Schwarz inequality. The third “≤” is due to the fact that a ∗ b ≤ a2+b2

2
for any a and b. The

fourth “≤” is due to the fact that ‖∇fs(x)‖2 ≤M2. Take expectation on both sides, we get:

14-4

ECE 901 Lecture 14 — March 8 Spring 2018

γ2E〈
k+τ∑

i=k−τ,i6=k

Ski∇fsi(x̂i),∇fsk(x̂k)〉 ≤ γ2 ∗ E{
k+τ∑

i=k−τ,i6=k

M2 ∗ 1si∩sk 6=0}

≤ γ2 ∗ 2τ ∗M2 ∗ E{1si∩sk 6=0}
= γ2 ∗ 2τ ∗M2 ∗ Pr{si ∩ sk 6= 0}

= γ2 ∗ 2τ ∗M2 ∗ ∆av

n

(14.7)

In Eq.14.7, 1si∩sk 6=0 is the indicator that whether sample i overlaps with sample k. So,
E{1si∩sk 6=0} is the probability that sample i overlaps with sample k. Denote the average
degree of the conflict graph as ∆av. In order to let γ2 ∗ 2τ ∗M2 ∗ ∆av

n
be below γ2M2, we

need to let τ ≤ n
2∆av

.

To recap the proof of convergence rate of Hogwild!:

1. Hogwild! is equivalent to a noisy serial SGD.

2. Asynchrony noise affects rates, but if bounded, not by much.

3. When core delay is less than τ ≤ n
2∆av

, noise does not affect convergence.

4. Hogwild! achieves linear speedups in terms of worst case convergence

We end this subsection by stating the theorem of convergence of Hogwild!.

Theorem 14.1. If the number of samples that overlap in time with a single sample during
the execution of Hogwild! is bounded as

τ = O(min{ n
∆̄C

,
M2

εm2
}),

Hogwild!, with step size γ = εm
2M2 , reaches an accuracy of E‖xk − x∗‖2 ≤ ε after

T ≥ O(1)
M2 log(a0

ε
)

εm2

iterations.

14.1.3 Examples of sparse problems

• Sparse support vector machine

14-5

ECE 901 Lecture 14 — March 8 Spring 2018

In sparse SVM, we need to fit a support vector machine where we know a priori that the
examples zα are very sparse to some data pairs E = {(z1, y1), . . . , (z|E|, y|E|)} where z ∈ Rn

and y is a label for each (z, y) ∈ E. The cost function is:

min
x

∑
α∈E

max(1− yαxT zα, 0) + λ‖x‖2
2 (14.8)

To write Eq.14.8 in the form of Eq.14.1, let eα denote the components which are non-zero
in zα and let du denote the number of training examples which are non-zero in component
u(u = 1, 2, . . . , n). Then we can rewrite Eq.14.8 as:

min
x

∑
α∈E

(max(1− yαxT zα, 0) + λ
∑
u∈eα

x2
u

du
) (14.9)

where du is the edge degrees and each term in the sum in the parenthesis depends only on
the components of x indexed by the set eα.
We can get the following bound whose proof is leaved to readers.

∆̄C

n
= O(

avg conflicts

n
) (14.10)

• Matrix completion

In the matrix completion problem, we are provided entries of a low-rank, d1 x d2 matrix MMM
from the index set E with |E| = n. Our goal is to reconstruct MMM from this sparse sampling
of data. We can estimate MMM as a product LRTLRTLRT (LLL is a d1 x r matrix and RRR is a d2 x r matrix)
of factors obtained from the following minimization:

min
(L,RL,RL,R)

∑
(u,v)∈E

(LLLuRRR
T
v −Muv)

2 +
µ

2
‖LLL‖2

F +
µ

2
‖RRR‖2

F (14.11)

where LLLu denotes the u-th row of LLL,similarly for RRRv. We can put this expression in the
sparse setting:

min
(L,RL,RL,R)

∑
(u,v)∈E

{(LLLuRRRT
v −Muv)

2 +
µ

2|Eu−|
‖LLLu‖2

F +
µ

2|E−v|
‖RRRv‖2

F} (14.12)

where Eu− = {v : (u, v) ∈ E} and E−v = {u : (u, v) ∈ E}.
We can get the following bound whose proof is leaved to readers.

∆̄C

n
= O(

d2

d2
1

) (14.13)

• Graph cuts

14-6

ECE 901 Lecture 14 — March 8 Spring 2018

In graph cuts problems, we are given a sparse matrix W which indexes similarity between
entities. We want to match each string to some list of D entities. Each node is associated
with a vector xi in the D-dimensional SD = {ζ ∈ RD : ζv ≥ 0

∑D
v=1 ζv = 1}. The cost

function is shown as follows.

minimize
x

∑
(u,v)∈E

wuv‖xu − xv‖1

subject to xv ∈ SD for v = 1, . . . , n.

(14.14)

We can get the following bound whose proof is leaved to readers.

∆̄C

n
= O(

avg degree

n
) (14.15)

14.1.4 Experiments on Hogwild!

From the paper[2], experiments run on 12-core machine: 10 cores for gradients and 1 core
for data shuffling. The speedups of Hogwild! compared to other algorithns(RR: round-
robin approach implemented in Vowpal Wabbit and AIG: a protocol identical to Hogwild!
except that it locks some variables before and after “for” loop in Hogwild!) is shown in
Fig.14.3.

Figure 14.3: Total CPU time versus number of threads for RCV1(sparse SVM), Net-
flix(matrix completion) and Abdomen(graph cuts) respectively

14.2 Open problems

There many open problems for Hogwild! and its relating areas.

1. Hogwild! on dense problem.

2. Fundamental trade-off on sparsity and learning quality.

3. True speedup proofs forHogwild!.

14-7

ECE 901 Lecture 14 — March 8 Spring 2018

4. Are there guarantees for nonconvex problems?

5. How to provably scale on NUMA.

6. Synchronization v.s. Asynchronization.

For (1), in our analysis in the sparse setting, the assumption is sparsity + convexity⇒ linear
speedups. It is natural to extend analysis on Hogwild! in the dense setting. One idea is
that we should featurize dense ML problems, so that updates are sparse. For (2), it is still
open to analyze the trade-off between sparsity and learning quality. For (3), we only prove
that

worst case speedup =
bound on #iter of SGD to ε

bound on #iter of parallel SGD to ε

But what we really care about is:

speedup =
time of serial A to accuracy ε

time of parallel A to accuracy ε

For (5), due to communication, issues come when scaling across nodes. For (6), Synchro-
nization v.s. Asynchronization is still open.

14.3 Reproducibility

Hogwild! is not reproducible because each training session has inherent “system” random-
ness. So, it does not allow to recreate models if needed. How can we solve it? We may use
serial equivalence:

Aserial(S, π) = Aparallel(S, π)

for all data sets S and for all data order π(data points can be arbitrary repeated). The
advantages of this method are that we only need to “prove” speedups and convergence proofs
inherited directly from serial. The issues are that serial equivalence is too strict and cannot
guarantee any speedups in the general case. Hence, in the next lecture, we will address the
following questions: when is serial equivalence feasible? What algorithmic patterns allow
for efficient serial equivalent? Can a serial equivalent parallel algorithm ever be competitive
with Hogwild!?

14-8

Bibliography

[1] Horia Mania et al. “Perturbed Iterate Analysis for Asynchronous Stochastic Optimiza-
tion”. In: SIAM Journal on Optimization 27.4 (2017), pp. 2202–2229. url: https:

//arxiv.org/abs/1507.06970.

[2] Benjamin Recht et al. “Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gra-
dient Descent”. In: Advances in Neural Information Processing Systems 24. Ed. by J.
Shawe-Taylor et al. Curran Associates, Inc., 2011, pp. 693–701. url: http://papers.
nips . cc / paper / 4390 - hogwild - a - lock - free - approach - to - parallelizing -

stochastic-gradient-descent.pdf.

9

