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Lecturer: Dimitris Papailiopoulos Scribe: Jiefeng Chen & Zihang Meng

Note: These lecture notes are still rough, and have only have been mildly proofread.

7.1 Review

Last time we learn about SGD. Compared with GD, it has the following properties:

- number of iterations to get accuracy ε is more than GD.

- Cost per update is less than GD (≈ n times faster than GD).

Now we have a question: Can we have small iteration complexity and also fast convergence?
The answer is yes. We can use SVRG.

7.2 Convergence Rate of GD and SGD

We would like to understand what causes SGD to have slower rate than GD. We will revisit
the finite sum setup:

f(w) =
1

n

n∑
p=1

fp(w) (7.1)

Now we will compare the convergence rate of SGD with that of GD.

• SGD on λ-strong convexity function f(w):

E‖wk+1 − w∗‖2 ≤ (1− γλ)E‖wk − w∗‖2 + γ2E‖∇fsk(wk)‖2 (7.2)

≤ (1− γλ)E‖wk − w∗‖2 + γ2M2 (7.3)

· · · (7.4)

≤ (1− γλ)k+1‖w0 − w∗‖2 +
γ

λ
M2 (7.5)

• GD on λ-strong convexity and B-smooth function f(w):

‖wk+1 − w∗‖2 ≤ (1− γλ)‖wk − w∗‖2 + γ2‖∇f(wk)‖2 (7.6)

≤ (1− γ)‖wk − w∗‖2 + γ2β2‖wk − w∗‖2 (7.7)

= (1− γλ+ γ2β2)‖wk − w∗‖2 (7.8)

≤ (1− γλ+ γ2β2)k+1‖w0 − w∗‖2 (7.9)
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(7.2) and (7.6) are the bounds from last lecture.
We can observe that the convergence rate of SGD look like this:

Ck
1‖w0 − w∗‖2 + V (7.10)

And for GD, it looks like this:

Ck
2‖w0 − w∗‖2 (7.11)

The V -term causes worse rates in SGD. This is because we cannot take advantage of smooth-
ness in SGD since

‖∇fsk(wk)‖2 ≤ βsk‖wk − w∗
sk
‖2 (7.12)

The smoothness gives us an upper bound, but only with respect to the global optimization
of a single function and in general

argmin
w
fi(w) 6= argmin

w

∑
i

fi(w) (7.13)

However, we can do a trick:

‖∇fsk(wk)‖2 = ‖(∇fsk(wk)−∇fsk(w∗)) +∇fsk(w∗)‖2 (7.14)

≤ 2‖∇fsk(wk)−∇fsk(w∗)‖2 + 2‖∇fsk(w∗)‖2 (7.15)

≤ 2β‖wk − w∗‖2 + 2‖∇fsk(w∗)‖2 (7.16)

Note that ∇fsk(w∗) 6= 0. From (7.14) to (7.15), we use the fact that (a + b)2 ≤ 2a2 + 2b2.
Let A = 2β‖wk−w∗‖2 and B = 2‖∇fsk(w∗)‖2. A looks like the term in GD and B measures
how large the gradient of fsk is at the global minimum of

∑
i fi(w). Note that when A ≥ B,

SGD is in the linear rate regime. (i.e. variance decays with number of iterations).

What we want is a variant of SGD, e.g. wk+1 = wk − γgk(wk) (First-order update) such
that we have following properties:

7-2



ECE 901 Lecture 7 — February 13 Spring 2018

- A good converge rate(A ≥ B is always true).

- Fast update(gk is ”cheap” on average).

- E[gk(wk)] = ∇f(wk).

And this is possible. We can use SVRG which will be introduced in the next section.

7.3 Stochastic Variance Reduced Gradient (SVRG)

We can let

gk(w) = ∇fsk(w)−∇fsk(w0) +∇f(x0) (7.17)

Then

E[gk(w)] = ∇f(w)−∇f(w0) +∇f(w0) = ∇f(w) (7.18)

So this satisfy E[gk(wk)] = ∇f(wk).

Lemma: suppose each fi is λ-strongly convex, then

E‖wk+1 − w∗‖2 ≤ (1− λγ)E‖wk − w∗‖2 + γ2E‖gk(wk)‖2 (7.19)

The last term on the right is the ”variance”.

Let’s bound the E‖gk(w)‖2.

E‖gk(w)‖2 = E‖∇fsk(w)−∇fsk(w0) +∇f(w0) +∇fsk(w∗)−∇fsk(w∗)‖2 (7.20)

≤ 2E‖∇fsk(w)−∇fsk(w∗)‖2 + 2E‖∇fsk(w0)−∇fsk(w∗)−∇f(w0)‖2 (7.21)

Let the first term be A, the second term be B

A ≤ 2β2E‖w − w∗‖2 (7.22)

B = 2E‖∇fsk(w0)−∇fsk(w∗)−∇f(w0) +∇f(w∗)‖2 (7.23)

Since we have: 2E‖x−E(x)‖2 ≤ 2E‖x‖2 and E[∇fsk(w0)−∇fsk(w∗)] = −∇f(w∗)+∇f(w0).
So

B ≤ 2E‖∇fsk(w0)−∇fsk(w∗)‖2 ≤ 2β2‖w0 − wk‖2 (7.24)

Then if we suppose that all f is λ-strongly convex, β-smoothness

E‖wk+1 − w∗‖2 ≤ (1− γλ)E‖wk − w∗‖2 + 2γ2β2E‖wk − w∗‖2 + 2γ2β2‖w0 − w∗‖2 (7.25)

≤ (1− γλ+ 2γ2β2)
(k+1)

+ 2(k + 1)γ2β2‖w0 − w∗‖2 (7.26)
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We want (1− γλ+ 2γ2β2)
(k+1) ≤ 1/4 and 2(k + 1)γ2β2 ≤ 1/4.

So we can set k = O(β
2

γ2
) and γ = O(1) λ

β2 , then we have

E‖wk − w∗‖2 ≤ 1

2
‖wk − w∗‖2 (7.27)

Notice that the above decreasing rate is a constant factor, so we need to do SVRG in
”Epochs”. The algorithm is showed below:

Algorithm 1 Doing SVRG in Epochs

1: for epoch=1:E do
2: g ← ∇ f(y)
3: for s=1:S do
4: st ∼ unif{1, ..., n}
5: wt+1 ← wt − γ(∇fst(wt)−∇fst(y) + g)
6: t← t+ 1

7: y ← wk−1

If so, we have:

E‖wE − w∗‖2 ≤ (
1

2
)E‖w0 − w∗‖2 (7.28)

It behaves like ”Linear Convergence” (like GD)
The cost is:

O(log(
1

ε
)) ∗ cost(∇f +

β2

λ2
log(1/ε) +

cost(∇f)

n
) (7.29)

7.4 Discuss

For SVRG, there are some issues:

- More hyper-parameters to tune.

- Seems to not do as well on non-convex functions.

And there are some open problems:

1. What happens if we run SGD for a while, then do GD or SVRG?

2. Can gk(w) be adaptively chosen?

3. How do we pick gk to minimize number of iterations?

4. Why is SVRG not as good on non-convex functions?
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