
ECE 901: Large-scale Machine Learning and Optimization Spring 2018

Lecture 5 — February 6

Lecturer: Dimitris Papailiopoulos Scribe: Michael Fernandes, Gia Hong Geoffrey Lau

Note: These lecture notes are still rough, and have only have been mildly proofread.

In the last lecture, we discussed how structure of a function helps in reducing algorithmic
complexity, and we also explored in detail the Gradient Descent method.

In this lecture, we are interested in studying the convergence rate of Gradient Descent
applied on strongly convex problems and its complexity. We also compare convergence rates
of Gradient Descent applied to strongly convex functions, smooth functions, and non-convex
smooth functions. Towards the end of the lecture, we analyze the order of complexity of
Gradient Descent on the Logistic Regression function with regularization, as an example.

5.1 Analysis of Gradient Descent on Smooth and Strongly

Convex Problems

Let’s recall, a continuously differentiable function f is β-smooth if the gradient ∇f is
β-Lipschitz, that is:

||∇f(x)−∇f(y)|| ≤ β||x− y|| (5.1)

Also if the function f is λ strongly convex, we can prove that the Co-coercivity of gradient
is given by

(∇f(x)−∇f(y))T (x− y) ≥ 1

λ
||∇f(x)−∇f(y)||2 (5.2)

We will now consider functions having both strong convexity and smoothness. This should
allow for drastic improvements in convergence rates. Let us consider a function f that is
β-smooth and λ strongly convex on Rn. Let us denote κ = β

λ
as the condition number of f .

Then the Co-coercivity of the gradient is given by

(∇f(x)−∇f(y))T (x− y) ≥ λβ

β + λ
||x− y||2 +

1

β + λ
||∇f(x)−∇f(y)||2 (5.3)

Corollary 5.1. We have that y = x∗ is the optimum vector. Then:

∇f(x)T (x− x∗) ≥ c1||x− x∗||2 + c2||∇f(x)||2 (5.4)

where ∇f(x)T denotes the gradient of the function, and (x−x∗) denotes how far the current
point x is from the optimal x∗.

5-1

ECE 901 Lecture 5 — February 6 Spring 2018

This inequality tells us that a strong correlation exists between the gradient of a function
and the optimum.

Theorem 5.2. Let f be β-smooth and λ strongly convex on Rn. Then gradient descent
with step size γ= 2

λ+β
satisfies,

||xt − x∗||2 ≤ exp
(
− 2t

κ

)
||x0 − x∗||2 (5.5)

where κ = β
λ

is the condition number of function f . A low condition number is preferred as
it implies that the function is well-conditioned.

Proof: For the purpose of the proof let us define ||xk+1 − x∗||=∆t+1

||xk+1 − x∗|| = ||xk − γ∇f(xk)− x ∗ ||2

∆t+1 = ∆t − 2γ〈∇f(xk), xk − x∗〉+ γ2||∇f(xk)||2

≤ ∆t − 2γ
(λβ

λ+ β
||xt − x∗||2 + γ2||∇f(xk)||2

)
= ||xt − x∗|| −

4λβ

(λ+ β)2
∆t

=
(

1− 4λβ

(λ+ β)2

)
∆t

=
(λ2 + 2λβ + β2 − 4λβ

(λ+ β)2

)
∆t

≤
(λ− β
λ+ β

)2
∆t

=
(1− β/λ

1 + β/λ

)2
∆t

=
(1− κ

1 + κ

)2
∆t

...

≤
(1− κ

1 + κ

)2
·∆0

= e2tlog(1−
2
κ
) ·∆0

≤ e−
2t
κ ·∆0

(5.6)

which concludes the proof and also tells us gradient descent is exponentially faster on β-
smooth and λ-strongly convex functions. �

5-2

ECE 901 Lecture 5 — February 6 Spring 2018

5.2 Comparison of Convergence Rates of Various Func-

tion Classes

An overview of the best-case convergence rates of some commonly-encountered functions
are listed in the table below (note that R = ||x0 − x∗||, and T refers to the number of
iterations):

Function Class Convergence Rate

L-Lipschitz RL√
T

β-smooth and λ-strongly convex R2 exp (−2λ
β
T)

L-Lipschitz and λ-strongly convex L2

λT

β-smooth βR2

T

Based on this table and the proof presented in the previous section, we conclude that the
structure of a function can help in improving computational complexity. However, we should
be cautious that the bounds of complexity are not always tight.

The reader is encouraged to refer to the readings associated with this lecture ([Bubeck]
Theorems 3.9, 3.10, 3.12, 3.13, 3.14, 3.15) for details of the proofs for upper and lower bounds
of complexity for different function structures.

5.3 Computational Complexity of the Gradient De-

scent Method

Our interest in how the complexity of the Gradient Descent method scales with size (n)
and dimension (d) of a given dataset leads us to this analysis.

The gradient of the function (∇f) is our unit of cost, and our goal is to measure the total
number of gradient evaluations in order to reach ε-accuracy. The total cost is then:

Total Cost = O([# of gradient evaluations][# of iterations (for ε-accuracy)])

5.3.1 An Example: Logistic Regression with Regularization

To illustrate an example, we would like to characterize the structure of the Logistic Regres-
sion function that has a Regularization term. This would help us determine the complexity
of Gradient Descent when applied to this function:

f(w) =
1

n

n∑
i=1

log(1 + e−yi〈w,xi〉) + λ||w||2 (5.7)

5-3

ECE 901 Lecture 5 — February 6 Spring 2018

Let’s list down the characteristics of various entities in this function:

• log(1 + ex) is 1-Lipschitz and 1
4
-smooth

• g1(g2(x)) is L1L2-Lipschitz

• 〈x,w〉 is ||x||-Lipschitz

• g(〈x,w〉) is β||x||2-smooth

Therefore, the first summation term in f(w) is only 1
n

∑
i ||xi||-Lipschitz and 1

4
(1
n

∑
i ||xi||2)-

smooth. It is the regularization term that has the property of being λ-strongly convex. As
a result, f(w) is a β-smooth and λ-strongly convex function.

To analyze the complexity of Gradient Descent on f(w), we assume the following (where
d is the dimension of the dataset):

• ||xi|| = O(
√
d)

• ||w∗|| = O(
√
d)

• R = ||wo − w∗|| ≤ O(
√
d) (R is the initial distance between w0 and w∗)

• β = O(d)

• λ = O(1) (λ is a constant that does not scale with dimension d)

In order to achieve ε-error, we require the total number of iterations T of Gradient
Descent to satisfy the following condition:

T = (d)log(
d

ε
) (5.8)

where d refers to the number of dimensions.

The cost per iteration is then given by:

∇li(w) = l′i(〈xi, w〉)xi (5.9)

where l′i is the pointwise derivative of the loss function for datapoint i. The complexity of
evaluating (〈xi, w〉)xi for a single datapoint i is O(d), and since the dataset is of size n, we
end up with a complexity per iteration of O(nd) for one pass over our data.

Recalling the previous expression for total cost involved in achieving ε-accuracy, we then
arrive at a complexity of O(nd2log(d

ε
)) for Gradient Descent on the regularized Logistic

Regression function. We observe that while complexity is linear in the number of datapoints
n, however, it is quadratic in the dimensions d!

5-4

ECE 901 Lecture 5 — February 6 Spring 2018

This is undesirable as we would like complexity of our algorithms to be linear in both n and
d. Therefore, this motivates us to explore other methods of performing Gradient Descent,
such as Stochastic Gradient Descent, which we will see in the next lecture.

5-5

