ECE 901: Large-scale Machine Learning and Optimization Spring 2018
Lecture 3 — 01/30

Lecturer: Dimitris Papailiopoulos Scribe: Sourish Sinha, Christopher Vandamme

’ Note: These lecture notes are still rough, and have only have been mildly proofread.

3.1 From Statistical Bounds to Optimization
The main topics of this section are computational aspects of Empirical Risk Minimization

(ERM).

3.1.1 Concentration Bounds

We start by assuming that the optimal risk R[] of a hypothesis class , h, is bounded by the
some value value € as

A

R[h] < R[h] +€,Yh e H (3.1)

with probability 1 — d, where H is the collection of all possible hypothesis classes. Em-
perical Risk Minimization is aimed at finding the hypothesis class that minimizes the risk
as

~

h* = argminyep R[R] (3.2)

i.e. the optimal hypothesis class. What we really want is the ”true” performance of h*.
The true performance is represented by the expectation of the loss function as

R[] = E[l(h"(x),y)] (3.3)
If we enforce the concentration, Vh € H, then we can obtain

A

R[h*] = R[h*] + (R[I"] — R[I*])
= R[h*] + (R[h*] — R[h*]) (3.4)
< R[h] + €

The last part of Eq (3.4) is with probability 1—¢§. We can show that if the ER concentrates
then

3-1

ECE 901 Lecture 3 — 01/30 Spring 2018

R[h*] < R[h] + ¢ (3.5)

Furthermore, we can relate R[h*] to the best predictor in H, starting with

~

h* = argminye g R[A) (3.6)
We can show that
R[h*] = R[h*] + €
< RIh +
< R[h*] + [R[h*] — R[h']] + €
< R[ﬁ*] + 2¢

In conclusion, assuming concentration, we can then argue about the best possible pre-
dictor using the performance of the ERM. The previous analysis provides a brief overview
of why ERM in general is a good approach. The next section discusses some forms of ERM
found in different applications.

3.1.2 ERM Examples

This section discusses some common structural forms or Empirical Risk Minimization.

Regression

1. Linear Regression
Linear regression has the following structure

n

1
. 2 . 2
min|| Xw — y||* = ming ;1 (i — wz;)” + AR(w) (3.8)

where R(w) can have the form of ||w||3 relating to penalization of the 2-norm of weight
vectors. This is termed ridge regression in machine learning, known as Tikhonov
Regularization in many other fields. This relates to a Gaussian prior placed onto the
weights. This is often implemented in order to restrain the size of the weight vector.
An alternative regularization is to restrain the 1-norm of the weight vector having form
of ||w||; which is termed Least Absolute Selection and Shrinkage Operator (LASSO).

2. Nonlinear Regression (e.g. Neural Network)
Nonlinear regression is the natural extension of Linear Regression in which the cost

3-2

ECE 901 Lecture 3 — 01/30 Spring 2018

function evaluation does not have a close form linear algebra solution. The general
form of a nonlinear regression problem with regularization is

n

min 3 "(gs — h(wi, w))? + AR(w) (3.9)

n -
=1

Common examples of nonlinear regression are nonlinear least squares and neural net-

works.
Classification
1. Binary
The binary classification with a logistic loss function can be represented as
min Zn: log(1 + e~ ¥iwlw) (3.10)
o ! '

The binary classification with a 0-1 function can be represented as

1 n
n— 0,1 -y, 3.11
mmn;max(1 — gz w) (3.11)

2. Multi-Class (for 1-sample)
The mulit-class classification with cross-entropy loss is represented as

1 n
in— 0,1—yxr 3.12
min_ ;:1 max(0,1 — y;z; w) (3.12)

3.1.3 ERM Optimization Task

The ERM optimization problem is tasked within finding the parameters that minimizes the
sum of loss functions with the general form

1 n
nw == 1+ A 1
min, = — 2 + AR(w) (3.13)

The two major questions associated with this problem are; is it solvable and if so how fast
can it be solved. Knowing the form of the loss function, type of regularization function and
underlying structure of the problem can help establish information about the ”solvability”
and ”scalability” of the optimization task at hand. In general ERM is NP-Hard which asserts
that polynomial time algorithm is unlikely.

3-3

ECE 901 Lecture 3 — 01/30 Spring 2018

3.2 Families of functions:

Let’s try and put some structure to this:

g
o

Figure 3.1: Illustrative overlap of the different families of functions, showing nonconvex,
smooth, L-Lipschitz and strongly convex functions

3.2.1 Convex functions:

Convex functions operating on vectors take a form wherein they are upper bounded by some
convex combination of those vectors. The following is a general way of expressing a convex
function f:

f(aX + (1 —a)y) < af(X) + (1 — a)f(y) (3.14)

wherein X and y are 2 vectors, and a € [0,1]. This is clearly illustrated when we
consider the plot of the convex function f below:

Q (ax « C\—oﬁ%y < C\QG’%) +«Cl-a) %%)
\’\f——/ H/—\/

Do

1)

A,:\?
_P}
\’_/

< Y

Figure 3.2: Graph of the convex function f evaluated at X and y

3-4

ECE 901 Lecture 3 — 01/30 Spring 2018

Note that any single point on the function f, given by f (a? +(1- a)?) always lies
below the line described by af (?) + (1 —a)f (?), which gives us the inequality referenced
in equation 3.14.

This fact of convexity makes our lives easy. For instance, in the case of convex functions
mxin f(x) is always solvable in polynomial time.

@ Note that an important property of convex functions is that every local
minimum is always equivalent to the global minimum!

3.2.2 L-Lipschitz functions:

L-Lipschitz functions are those that don’t ‘change fast’. In other words, a given function f
is L-Lipschitz if the following holds:

f(X) - EF)<L X -V VXV (3.15)

wherein L is the Lipschitz constant. This indicates that the difference in value obtained
by evaluating the function at 2 different points X and 7 is upper bounded by the distance
between the points. So for points that are closely spaced, the functional value does not
change too much between them.

3.2.3 [-smooth functions:

[-smooth functions are functions with gradients that don’t change fast. In other words, a
given function f is S-smooth if the following holds:

IVEX) - VIR <B- X -VI V¥ X, ¥ (3.16)

This is somewhat analogous to the previous Lipschitz case. Here, the difference in the
slopes of the function evaluated at 2 different points X and ? is upper bounded by the
distance between the points. Again, for points that are closely spaced, there is not much
variation in the gradients.

3.2.4 Strongly convex functions:

These are the best kind of functions. As can be seen from figure 3.1, strongly convex functions
lie at the intersection of smooth, L-Lipschitz and convex functions, meaning they have the
properties of all three. In general, a strongly convex function f may satisfy the following:

F(R) ~ £(7) < (VE(R)x—y) — allx— v (317)

3-5

ECE 901 Lecture 3 — 01/30 Spring 2018

3.3 Examples of different functions:

3.3.1 Convex functions:

Convex functions include ||x||?, ||x||, log(1 + €*) and max{0,1 — x}.

In general, if a function g(-) is convex, then g(wTx +b) is also convex. For instance,
log(1 + exp(—y(w,x))), wIx — b? etc.

If f;(x) are convex, then functions of the form Z wifi and max f;(x) are also convex.
N 1

1

3.3.2 L-Lipschitz functions:

The functions |x| and f(x) = log(1 + €*) are 1-Lipschitz functions.
Note that x? is not Lipschitz, unless |x| < p, in which case it is p-Lipschitz.
The function f(w) = wTx + b is ||x||-Lipschitz.

If a function is of the form f(x) = g1(g2(x)), we may say the following: if gy is L;-Lipschitz,
and gg is Lo-Lipschitz, then this implies f is L Lo-Lipschitz.

The function g(wTx +b) is ||x||L,-Lipschitz, where L, may be thought of as the Lips-
chitz constant of the activation function.

If ||VE(w)|| < L, then this implies f is L-Lipschitz.
3.3.3 [(-smooth functions:

The function |x|? is 2-smooth.

The function log(1 + €*) is 3-smooth.

If a function g is S-smooth, then f(w) = g(wTx +b) is SBgl|x||>-smooth, provided g is
smooth with f,.

The function f(w) = log(1 + exp(—y(w, x))) is @—smooth.

3-6

ECE 901 Lecture 3 — 01/30 Spring 2018

3.3.4 Strongly convex functions:

A

A function f is A-strongly convex if f(w) — 5 is convex.

& A
For example, the function Z log(1 + exp(—y(w,x))) + §||w||2 is strongly convex.

i=1

3.4 Next time:

We will look at convergence bounds, which tell us how fast a function converges.

We will also look at questions like: Why is convexity useful? How do we exploit the structures
of functions algorithmically? In addition, we will also start looking at gradient methods.

3-7

