
ECE 901: Large-scale Machine Learning and Optimization Spring 2018

Lecture 1 — January 25

Lecturer: Dimitris Papailiopoulos Scribe: Hongyi Wang × Harrison Rosenberg

Note: These lecture notes are still rough, and have only have been mildly proofread.

ML research is multi-disciplinary, combining high-dimensional statistics, algorithms, and
optimization.

1.0.1 Some Definitions

The Loss Function, L(∗) measures difference between the “correctness” of model predictions
and reality. For simplicity, we will assume the loss function always evaluates to a number
between zero (0) and one (1).

Training Data:

S = {z1, . . . zn} (1.1)

Each Element zi in S represents a tuple containing a set of features AND a label drawn from
an unknown distribution D. A machine learning algorithm learns a model from the training
data

Empirical Risk Minimization:

min
h∈H

1

n

n∑
i=1

L(h(xi), yi) (1.2)

Algorithms train on training data, they seek to find the model which minimizes the
Empirical Risk – (or training error). This problem is not guaranteed to be convex (i.e.
neural networks), but can be (Ridge Regression). Theory is somewhat developed for when

S
iid∼ D

Below true risk is defined:

R(hs) = ES[L(hs(x,y)] (1.3)

It almost always impossible to evaluate this quantity, as the distribution D is unknown,
hence ERM is used to generate a classifier

1-1

https://hwang595.github.io/
http://harrisonrosenberg.com/

ECE 901 Lecture 1 — January 25 Spring 2018

More key terms you should be familiar with from past ML courses: training, validation,
test, cross-validation, hold-out set. Please review them.

This lecture focuses on the following questions:

• When is Empirical Risk Minimization a good estimation for true risk (does ERM
concentrate about the true risk)?

• How does the choice of the model affect the concentration of the empirical risk?

TL;DR: find a hypothesis hS ∈ H with small True Risk (Equation (1.3))

1.0.2 Generalization

The generalization of a hypothesis h is a function of the following:

•S • n • H • D • Training Algorithm

One way to determine generalization is PAC learning, often associated with Hoeffding
Inequality. In the interest of avoiding redundancy, it is defined in the linked Wikipedia
page. The inequality is rather powerful because you do not need to know much about x.
You just need to know if the distribution is sub-Gaussian! That being said, you only get a
bound on your estimation error, not approximation error. Which is suboptimal. Another
concentration inequality of interest is Bernstein’s inequality, which provides a bound on the
deviation from the mean.

Hoeffding’s Inequality can be used to answer questions such as: “How many samples do
I need to guarantee that Sn = E[Sn]± ε with probability 1− δ?”

For example:

δ = 2e−nε
2

=⇒ n = O
(

(log(1
δ
))

ε2

)
A set of important assumptions to use Hoeffding’s Inequality:

• h ∈ H is independent of S.

• Ri[h] = L(h(xi, yi)) . Ri is true risk of each predictor h trained on the i.i.d. samples
of S.

• R̂S[h] = 1
n

∑
i

Ri[h] . The empirical risk of each predictor h as calculated on S

1-2

https://en.wikipedia.org/wiki/Hoeffding%27s_inequality
https://en.wikipedia.org/wiki/Hoeffding%27s_inequality

ECE 901 Lecture 1 — January 25 Spring 2018

Then, by Hoeffding Inequality we get:

P(|R̂S[h]− E[R̂S[h]]︸ ︷︷ ︸
True Risk

| ≥ ε) ≤ 2e−2nε
2

From Hoeffdings, we see the empirical risk “converges” to true risk ∼ 1√
n

What if |H| <∞? (it usually is for our purposes. Numerical representations are limited
by bits, i.e. 64 bit double)

Example: Say H consists of all binary linear classifiers, sign(w>x + b) = y, w ∈ {0, 1}d
(|H| = 2d). How can we bound the concentration of H?

Union Bound :
P(∪iAi) ≤

∑
i

P{Ai}

For binary linear classifiers, n = O(d−log(δ)
ε2

)

These bounds derived from Hoeffding’s inequality are oblivious to the algorithm! Only
the predictions matter!

1-3

	Some Definitions
	Generalization

