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Minimizing the Empirical Risk

* [he empirical cost function that we have access to

n ( Ryl =~ Y £k
min = — X;)s Y
he# > ni=1 i)

e Question; Can we approximate the solution to this minimization? If so
how fast!

* [he answer must depend on:
) n, the sample size
2) # ,the hypothesis class and loss function

3) &, the data distribution
4) the optimization alsorithm that outputs our classifier



| ast time: From GD to SGD



| ast time: Can we make GD faster?

Gradient Descent Method: Wi = W, — ¥ Viiw)

1 n
Note: we haven't used the fact that f(w) = — Z f:(w)
n
i=1

|dea (‘SOS,‘éOS 'Robbins, Monro], [Widrow, Hoﬁ‘]):
instead of computing V f(w) we can sample one f. at random and compute its gradient

Why does that make sense! In “expectation’ it's the same algorithm, I.e.,

1
E; uniform VJi = 2 " Vfi= Vfw)

Wiv1 = Wi — ?’Vfik(wk)

The Uber-Algorithm



Convergence rates tor SGD

Corollary:

SGD with constant stepwise achieves exponential convergence till error an error floor of
LZ
=Wy — W*HZ >c-0 (ﬁ) and after that achieves a rate of O(1/T) for arbitrary errors.

How does SGD compare with GD?




Computational complexity ot GD

Proposition:

1 « A
The function f(lw) = — Z log (1 + e‘yi(w’xi>) +—||lw]||?is
n = 2

—1 - - | et's make some assumptions:
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n -
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1
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* A-strongly convex

A= 0(1)

JTotal GD computational cost JTotal GD computational cost
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Computational complexity ot GD

Proposition:
| 1 « _ A 5 |
The function f(lw) = — Z log (1 + e yl'<w’xi>) + —|[w]|* is
n = 2
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A= 0(1)

|
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* A-strongly convex

o 5SGD s faster than GD (for regularized logistic regression and In the worst case) as long as

2100 (2 > L 1oe (£
nd“log > —log
€ € €

|
= € > —
n




OK what do | do In practice!
The SGD quick start guide

Newcomers to stochastic gradient descent often find all of these design choices
daunting, and it’s useful to have simple rules of thumb to get going. We recommend
the following:

1. Pick as large a minibatch size as you can given your computer’s RAM.
2. Set your momentum parameter to either 0 or 0.9. Your call!

3. Find the largest constant stepsize such that SGD doesn’t diverge. This takes
some trial and error, but you only need to be accurate to within a factor of 10
here.

4. Run SGD with this constant stepsize until the empirical risk plateaus.
5. Reduce the stepsize by a constant factor (say, 10)

6. Repeat steps 4 and 5 until you converge.

While this approach may not be the most optimal in all cases, it’s a great starting
point and is good enough for probably 90% of applications we’ve encountered.

Recht, Hardt, book 202 | ]



Convergence for Nonconvex
functions?



SGD/GD on general non convex functions?

Theorem

Let f(w) be a f-smooth function with L-bounded stoch. gradients (i.e., E;||Vf(w)|| < L).Then, the gradients of

R
SGD with step-size ¥y = satist
p Y BI2T Y

2
min E[[V /w12 < 2\/ RﬁTL

ke|T]




SGD/GD on general non convex functions?

Theorem

Let f(w) be a f-smooth function with L-bounded stoch. gradients (i.e., E;||Vf(w)|| < L).Then, the gradients of

R
SGD with step-size ¥y = satist
p Y BI2T Y

2
min E[[V /w12 < 2\/ RPL

ke[T) T

F0in) = J09) = (VJOR), Wiyt = ) < Sl = w2
p

= Efwiy1) — Efwp) + ¥V ), V(W) < ) 1y VI, (W) &




SGD/GD on general non convex functions?

Theorem

Let f(w) be a f-smooth function with L-bounded stoch. gradients (i.e., E;||Vf(w)|| < L).Then, the gradients of

R
SGD with step-size y = satist
P Y BL2T Y

ke[T) T

F0in) = J09) = (VJOR), Wiyt = ) < Sl = w2
p

= Efwiy1) — Efwp) + ¥V ), V(W) < ) 1y VI, (W) &

2
— Eflni) — B0 + 78IV 0mI> < EE IV, G

2
min E[|V 0|2 < 2\/ RPL




SGD/GD on general non convex functions?

Theorem

Let f(w) be a f-smooth function with L-bounded stoch. gradients (i.e., E;||Vf(w)|| < L).Then, the gradients of

R
SGD with step-size y = satist
P Y BL2T Y

ke[T) T

F0in) = J09) = (VJOR), Wiyt = ) < Sl = w2
p

= Efwiy1) — Efwp) + ¥V ), V(W) < ) 1y VI, (W) &

2
— Eflni) — B0 + 78IV 0mI> < EE IV, G

Efi (Wk+1) — [Ef (Wk) n }’Lzﬂ
% 2

2
min E[|V 0|2 < 2\/ RPL

= E[|VAwII* <




SGD/GD on general non convex functions?

Theorem

Let f(w) be a f-smooth function with L-bounded stoch. gradients (i.e., E;||Vf(w)|| < L).Then, the gradients of

R
SGD with step-size y = satist
P Y BL2T Y

ke[T) T

F0in) = J09) = (VJOR), Wiyt = ) < Sl = w2
p

= Efwiy1) — Efwp) + ¥V ), V(W) < 5”7 stk(Wk)Hz

2
— Eflni) — B0 + 78IV 0mI> < EE IV, G

Efi (Wk+1) — [Ef (Wk) n }’Lzﬂ
% 2

2
min E[|V Al < 2\/ RPL

= E[|VAwII* <

Efw)) = fwg)  yL*p
yT 2T

: 2 1 . 2
= min E[|Vw)|> < = D E[VAwI* <
k Tk=1



SGD/GD on general non convex functions?

Theorem

Let f(w) be a f-smooth function with L-bounded stoch. gradients (i.e., E;||Vf(w)|| < L).Then, the gradients of

R
SGD with step-size ¥ = satish
P Y BL2T %
' 0 RAL?
min E[|Vfwpl|* < 2
ke[T] T
F0in) = J09) = (VJOR), Wiyt = ) < Sl = w2
— /(W _[EW+VWVW<£VW2

This Is a very slow rate, that Is very conservative. Makes sense!

[t also doesn't tell us anything about the quality of the solution that SGD finds




GD on Polyak-t.ojasiewicz functions

Theorem

2
Let f(w) be a f-smooth, u-PL function (l.e,, ” V., L(w) ” > u(L(w) — L*).

1
Then, GD with with step-size y = — satisfies

L
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Proof: 2
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Local minima Global minima

h?
I |
2D
bDepar (a) Loss landscape of under-parameterized models (b) Loss landscape of over-parameterized models Jetworks
Figure 1: Panel (a): Loss landscape is locally convex at local minima. Panel (b): Loss landscape ng

incompatible with local convexity as the set of global minima is not locally linear. o edu
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PL In Least Squares



GD on linear least squares

Let's say we are trying to solve min || X?w — y||* with GD
w
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GD on linear least squares

. Let's say we are trying to solve min || X’w — y||* with GD.
w

+  The gradient of the loss is equal to V|| X'w — y||* = X(XTw — y)
* Note that

| V..Lw) | 7 = | 2XXTw - y) | =y

XX || Xw -y | T 45 (xXXT) - Liw)

min min

» Halthatis the PL condition assuming L* = 0O, which is true when data mat = full rank

Lemma:

Linear least squares where rank(X) = n is PL



GD on nonlinear least squares

Let's say we are trying to solve min ||A(X; w) — y||* with GD

W




GD on nonlinear least squares

Let's say we are trying to solve min ||A(X; w) — y||* with GD
w
The gradient of the loss is equal to V [|A(X;w) — y||? = [V, h(X; w)](R(X; w) — y)




GD on nonlinear least squares

. Let's say we are trying to solve min ||A(X; w) — y||* with GD.
w
e The gradient of the loss is equal to V ||A(X; w) — y||? = [V, h(X; w)](R(X; w) — y)

o letusrefertoJ(w) =V h(X;w) € R 35 the Jacobian of the predictions



GD on nonlinear least squares

GD.
The gradient of the loss is equal to V [|A(X;w) — sz =V, A(X;w)]|(h(X;w) —y)

Let's say we are trying to solve min ||A(X; w) — y||* with

Let us refer to J(w) =V h(X;w) € R 35 the Jacobian of the predictions
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GD on nonlinear least squares

. Let's say we are trying to solve min ||A(X; w) — y||* with GD.
w
« The gradient of the loss is equal to V_ ||A(X;w) — y||? = [V, h(X; w)](R(X; w) — y)

o letusrefertoJ(w) =V h(X;w) € R a5 the Jacobian of the predictions

* Note that again

| VoLon) || “ = | JonRXw) =) || * 2 42inT 0T || 1wy =y ||

min

 Hal that is the again PL condition (assuming L* = 0) with u = 41_. (X! X)

min

Lemma.

Non-linear least squares where min rank(J(w(w)) = n are PL in %'
WEW



Some examples of NINLS



| -layer linear Neural Networks
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assume output edges

are all fixed

A bit silly since
h(W; x) = (v, Wx) = (W', x)




| -layer linear Neural Networks

* Let us assume we have a |-layer linear network.

. he prediction of this network is given as h(W; x) = (v, Wx) @

assume output edges

are all fixed

reminder:

W) Iw)) || hXw) =y |

min

| V..Low) || = 42



| -layer linear Neural Networks

* Let us assume we have a |-layer linear network.

. he prediction of this network is given as h(W; x) = (v, Wx) @

assume output edges

are all fixed

reminder:

W) Iw)) || hXw) =y |

min

| V..Low) || = 42

ViX; ViXy ... VX

. 1 he Jacobian is equal to J(w) =V, A(W, x) = [ 5

kal VkXZ cen ka
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* Let us assume we have a |-layer linear network.

. he

| V..Low) || = 42

. 1 he Jacobian is equal to J(w) =V, A(W, x) = [ 5

orediction of this network is given as i(W; x) = (v, Wx) @

assume output edges
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| -layer leaky RelLU Neural Networks

Let us assume we have a |-layer linear network

he prediction of this network is given as h(W; x) = (v, o(Wx))

% assume output edges
are all fixed




| -layer leaky RelLU Neural Networks

* Let us assume we have a |-layer linear network
. he prediction of this network is given as h(W; x) = (v, 6(Wx))

assume output edges

are all fixed
reminder:
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| -layer leaky RelLU Neural Networks

* Let us assume we have a |-layer linear network
. he prediction of this network is given as h(W; x) = (v, 6(Wx))

assume output edges

are all fixed
reminder:
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min
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| -layer leaky RelLU Neural Networks

* Let us assume we have a |-layer linear network
. he prediction of this network is given as h(W; x) = (v, 6(Wx))

assume output edges

are all fixed
reminder:

| Vo Low) || * 2 4in@ 0 Tw) || X w) =y |

min

o' ((wp,x1)) - x1 o ((w, %)X, ... o((wy,x,)) X,

The Jacobian is equal to J(w) = diag(v{{,, ..., V1))

o' ((Wex1)) X 6 ((WuX2)) Xy ... 6((w,Xx,) - x,

Note rank(J(w)) = n if the rank of the data matrix is n and also at least one activation has nonzero
derivate for all models.




Next time: More result on NNs/N K/
Overparameterization
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