FCEB26 Lecture 9:

[he PL Land of Nonconvexity



Contents

* GD on general non convex functions
* PL makes things faster
*Linear & Non-linear least Squares

* | -layer Neural Networks



Minimizing the Empirical Risk

* [he empirical cost function that we have access to

n ( Ryl =~ Y £k
min = — X;)s Y
he# > ni=1 i)

e Question; Can we approximate the solution to this minimization? If so
how fast!

* [he answer must depend on:
) n, the sample size
2) # ,the hypothesis class and loss function

3) &, the data distribution
4) the optimization alsorithm that outputs our classifier



| ast time: From GD to SGD



| ast time: Can we make GD faster?

Gradient Descent Method: Wi = W, — ¥ Viiw)

1 n
Note: we haven't used the fact that f(w) = — Z f:(w)
n
i=1

|dea (‘SOS,‘éOS 'Robbins, Monro], [Widrow, Hoﬁ‘]):
instead of computing V f(w) we can sample one f. at random and compute its gradient

Why does that make sense! In “expectation’ it's the same algorithm, I.e.,

1
E; uniform VJi = 2 " Vfi= Vfw)

Wiv1 = Wi — ?’Vfik(wk)

The Uber-Algorithm



Convergence rates tor SGD

Corollary:

SGD with constant stepwise achieves exponential convergence till error an error floor of
LZ
=Wy — W*HZ >c-0 (ﬁ) and after that achieves a rate of O(1/T) for arbitrary errors.

How does SGD compare with GD?




Computational complexity ot GD

Proposition:

1 « A
The function f(lw) = — Z log (1 + e‘yi(w’xi>) +—||lw]||?is
n = 2

—1 - - | et's make some assumptions:
o § , HXZH + A - max HWH>—LIpschltz P
n -
l

wew x|l Iw]l = O (\/Zz)
1
9)
— x|l + A J-smooth and
A7 Zi x| )

* A-strongly convex

A= 0(1)

JTotal GD computational cost JTotal GD computational cost

d . 2
O (TED + cost( Vf)) =0 (rmz(X) - d log (_>) 0, <T€SGD- —cost(Vji-)> =0 nnz(X) . : . L log R
€ n € A2 €

_0 (nd2 log (?)) =0 (d?zl"g (9)




Computational complexity ot GD

Proposition:
| 1 « _ A 5 |
The function f(lw) = — Z log (1 + e yl'<w’xi>) + —|[w]|* is
n = 2
1 Let's make some assumptions:
— ) |lx|| + 4 - max ||w]|| ]-Lipschitz
(n 2 T ew Il lwl =0 (V)

A= 0(1)

|
) (4— Z x| % + l)—smooth and
n -

* A-strongly convex

o 5SGD s faster than GD (for regularized logistic regression and In the worst case) as long as

2100 (2 > L 1oe (£
nd“log > —log
€ € €

|
= € > —
n




OK what do | do In practice!
The SGD quick start guide

Newcomers to stochastic gradient descent often find all of these design choices
daunting, and it’s useful to have simple rules of thumb to get going. We recommend
the following:

1. Pick as large a minibatch size as you can given your computer’s RAM.
2. Set your momentum parameter to either 0 or 0.9. Your call!

3. Find the largest constant stepsize such that SGD doesn’t diverge. This takes
some trial and error, but you only need to be accurate to within a factor of 10
here.

4. Run SGD with this constant stepsize until the empirical risk plateaus.
5. Reduce the stepsize by a constant factor (say, 10)

6. Repeat steps 4 and 5 until you converge.

While this approach may not be the most optimal in all cases, it’s a great starting
point and is good enough for probably 90% of applications we’ve encountered.

Recht, Hardt, book 202 | ]



Convergence for Nonconvex
functions?



SGD/GD on general non convex functions?

Theorem

Let f(w) be a f-smooth function with L-bounded stoch. gradients (i.e., E;||Vf(w)|| < L).Then, the gradients of

R
SGD with step-size ¥y = satist
p Y BI2T Y

2
min E[[V /w12 < 2\/ RﬁTL

ke|T]




SGD/GD on general non convex functions?

Theorem

Let f(w) be a f-smooth function with L-bounded stoch. gradients (i.e., E;||Vf(w)|| < L).Then, the gradients of

R
SGD with step-size ¥y = satist
p Y BI2T Y

2
min E[[V /w12 < 2\/ RPL

ke[T) T

F0in) = J09) = (VJOR), Wiyt = ) < Sl = w2
p

= Efwiy1) — Efwp) + ¥V ), V(W) < ) 1y VI, (W) &




SGD/GD on general non convex functions?

Theorem

Let f(w) be a f-smooth function with L-bounded stoch. gradients (i.e., E;||Vf(w)|| < L).Then, the gradients of

R
SGD with step-size y = satist
P Y BL2T Y

ke[T) T

F0in) = J09) = (VJOR), Wiyt = ) < Sl = w2
p

= Efwiy1) — Efwp) + ¥V ), V(W) < ) 1y VI, (W) &

2
— Eflni) — B0 + 78IV 0mI> < EE IV, G

2
min E[|V 0|2 < 2\/ RPL




SGD/GD on general non convex functions?

Theorem

Let f(w) be a f-smooth function with L-bounded stoch. gradients (i.e., E;||Vf(w)|| < L).Then, the gradients of

R
SGD with step-size y = satist
P Y BL2T Y

ke[T) T

F0in) = J09) = (VJOR), Wiyt = ) < Sl = w2
p

= Efwiy1) — Efwp) + ¥V ), V(W) < ) 1y VI, (W) &

2
— Eflni) — B0 + 78IV 0mI> < EE IV, G

Efi (Wk+1) — [Ef (Wk) n }’Lzﬂ
% 2

2
min E[|V 0|2 < 2\/ RPL

= E[|VAwII* <




SGD/GD on general non convex functions?

Theorem

Let f(w) be a f-smooth function with L-bounded stoch. gradients (i.e., E;||Vf(w)|| < L).Then, the gradients of

R
SGD with step-size y = satist
P Y BL2T Y

ke[T) T

F0in) = J09) = (VJOR), Wiyt = ) < Sl = w2
p

= Efwiy1) — Efwp) + ¥V ), V(W) < 5”7 stk(Wk)Hz

2
— Eflni) — B0 + 78IV 0mI> < EE IV, G

Efi (Wk+1) — [Ef (Wk) n }’Lzﬂ
% 2

2
min E[|V Al < 2\/ RPL

= E[|VAwII* <

Efw)) = fwg)  yL*p
yT 2T

: 2 1 . 2
= min E[|Vw)|> < = D E[VAwI* <
k Tk=1



SGD/GD on general non convex functions?

Theorem

Let f(w) be a f-smooth function with L-bounded stoch. gradients (i.e., E;||Vf(w)|| < L).Then, the gradients of

R
SGD with step-size ¥ = satish
P Y BL2T %
' 0 RAL?
min E[|Vfwpl|* < 2
ke[T] T
F0in) = J09) = (VJOR), Wiyt = ) < Sl = w2
— /(W _[EW+VWVW<£VW2

This Is a very slow rate, that Is very conservative. Makes sense!

[t also doesn't tell us anything about the quality of the solution that SGD finds




GD on Polyak-t.ojasiewicz functions

Theorem

2
Let f(w) be a f-smooth, u-PL function (l.e,, ” V., L(w) ” > u(L(w) — L*).

1
Then, GD with with step-size y = — satisfies

L

k
Jow) —f* < (1 —%> (f(Wo) —f*)

fWwep) —fwy) < (Vf(wy), Wil — W) + é||Wl< — Wk+1”2
Proof: 2




GD on Polyak-t.ojasiewicz functions

Theorem

2
Let f(w) be a f-smooth, u-PL function (l.e,, ” V., L(w) ” > u(L(w) — L*).

|
Then, GD with with step-size y = T satisfies
k
Jow) —f* < (1 — %) (f(Wo) —f*)
fwii ) —fwy) < (Vf(Wk)a Wi+l — Wk> + é||Wl< — Wk+1”2
Proof: 2
< IR + v w2

232



GD on Polyak-t.ojasiewicz functions

Theorem

2
Let f(w) be a f-smooth, u-PL function (l.e,, ” V., L(w) ” > u(L(w) — L*).

|
Then, GD with with step-size y = T satisfies
k
Jow) —f* < (1 — %) (f(Wo) —f*)
fwii ) —fwy) < (Vf(Wk)a Wi+l — Wk> + é||Wl< — Wk+1”2
Proof: 2
< IR + v w2

232

<~ Livronl < = Ecw) - )
P P



GD on Polyak-t.ojasiewicz functions

Theorem

2
Let f(w) be a f-smooth, u-PL function (l.e,, ” V., L(w) ” > u(L(w) — L*).

1
Then, GD with with step-size y = T satisfies
k
Jwp) —f* < (1 — %) (f(Wo) —f*)
W) = fw) < (VW) Wiy r — wi) + é||Wk ~ Wil
Proof: 2

<~ VORI + s
<~ VI < = E(fomy —
o T ot

1
= ) = fOm) = f* < = IV FOIP < - %(f(wk) ) — f



GD on Polyak-t.ojasiewicz functions

Theorem

2
Let f(w) be a f-smooth, u-PL function (l.e,, ” V., L(w) ” > u(L(w) — L*).
|

Then, GD with with step-size y = T satisfies
k
Jwp) —f* < (1 — %) (f(Wo) —f*)
f(Wk+1) — f(wy) < (Vf(Wk)» Wit — Wk> + é||Wk - Wk+1”2
Proof: 2
<~ VORI + s
<~ Livsonl? < = Ecrony 19
=75 IS F; k
1
= ) = fOm) = f* < = IV FOIP < - %(f(wk) — f5) = f

FWeyy) — f% < — %(f(wk) —5) = (% — fwy)



GD on Polyak-t.ojasiewicz functions

Theorem

2
Let f(w) be a f-smooth, u-PL function (l.e,, ” V., L(w) ” > u(L(w) — L*).

1
Then, GD with with step-size y = — satisfies

L

k
Jwp) —f* < (1 —%> (f(Wo) —f*)

f(Wk+1) — flwp) < (Vf(Wk)» Wiel1 — Wk> + é||Wk — Wk+1”2
Proof: 2
p

< = 7IVFWIP + 5 IV fomo I

<~ Livsonl? < = Eciw) - )
5 5

1
= ) = fOm) = f* < = IV FOIP < - %(f(wk) ) — f

FWeyy) — f% < — %(f(wk) —5) = (% — fwy)

8
p

JWey) —f* < ( )(f(wk) — /%)



GD on Polyak-t.ojasiewicz functions

Theorem

2
Let f(w) be a f-smooth, u-PL function (l.e,, ” V., L(w) ” > u(L(w) — L*).

1
Then, GD with with step-size y = T satisfies
k
Jw) —f* < (1 — %) (flwg) — f*)
JWip) = fw) < VW, Wiy — wi) + é||Wk — Wk+1||2
Proof: ; 2

< — 7| V> + —|| VA(w)]|”

much faster rate, when Is PL satisfied?

= JWi) =JW) =77 < == [IVVWII" = = — (G W) —J7) —

p P

FWeyy) — f% < — %(f(wk) —5) = (% — fwy)

LK

ﬂ)(f(wk) — /%)

f(Wk+1) —f* < (



GD on PL functions

Theorem

2
Let f(w) be a f-smooth, u-PL function (l.e,, ” V., L(w) ” > u(L(w) — L*).

1
Then, GD with with step-size y = T satisfies
k
Jwp —f* < (1 —%) (fwy) = f*)
JWip) = fw) < VW, Wiy — wi) + g”Wk — Wk+1||2
< — | VFO |2+ = VFOu) |

much faster rate, when Is PL satisfied?

= JWiy ) —JW) — S_Ewk S_E W) — _
f(Wk+1) _f* < - %(f(wk) —f*) — (f* —f(wk))

LK

ﬂ)(f(wk) — /%)

f(Wk+1) —f* < (



Overparameterized Nonlinear Learning:
Gradient Descent Takes the Shortest Path?

Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks

Chaoyue Liu?, Libin ZhuP*, and Mikhail Belkin® Samet Oymak* and Mahdi Soltanolkotabif

®Department of Computer Science and Engineering, The Ohio State University
bDepartment of Computer Science and Engineering, University of California, San Diego
°Halicioglu Data Science Institute, University of California, San Diego

May 28, 2021
On the Convergence Rate of Training Recurrent Neural Networks
A Convergence Theory for Deep Learning Zeyuan Allen-Zhu Yuanzhi Li Zhao Song
. . . zeyuan@csail .mit.edu yuanzhil@stanford.edu zhaos@utexas.edu
Vla Over—Parameterlzathn Microsoft Research Al Stanford University UT-Austin
Princeton University University of Washington
Zeyuan Allen-Zhu Yuanzhi Li Zhao Song Harvard University
zeyuan@csail.mit.edu yuanzhil@stanford.edu zhaosQ@utexas.e October 28, 2018

UT-Austin

itv of Washineton
No bad local minima: Data independent training

error guarantees for multilayer neural networks

Gradient Descent Finds Global Minima of Deep Neural Networks

Daniel Soudry Yair Carmon
Department of Statistics Department of Electrical Engineering . %1 %9 ck34 oy e s £54 s .k 6
Columbia University Stanford University Simon S. Du ' Jason D. Lee - Haochuan Li Liwei Wang Xiyu Zhai
New York, NY 10027, USA Stanford, CA 94305, USA

daniel.soudry@gmail.com yairc@stanford.edu



Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks

Chaoyue Liu?, Libin Zhu®°, and Mikhail Belkin®

2 Department of Computer Science and Engineering, The Ohio State University
bDepartment of Computer Science and Engineering, University of California, San Diego
°Halicioglu Data Science Institute, University of California, San Diego

May 28, 2021
A Convergence Theory for Deep Learning
via Over-Parameterization

Zeyuan Allen-Zhu Yuanzhi Li

Zhao Song

Overparameterized Nonlinear Learning:
Gradient Descent Takes the Shortest Path?

Samet Oymak* and Mahdi Soltanolkotabif

On the Convergence Rate of Training Recurrent Neural Networks

Zeyuan Allen-Zhu
zeyuan@csail .mit.edu
Microsoft Research Al

Yuanzhi Li Zhao Song
yuanzhil@stanford. edu zhaos@utexas.edu
Stanford University UT-Austin
Princeton University University of Washington
Harvard University

aanle .souoryﬁgmal .Ccom

yaerOS aniora.edau




Local minima Global minima

h?
I |
2D
bDepar (a) Loss landscape of under-parameterized models (b) Loss landscape of over-parameterized models Jetworks
Figure 1: Panel (a): Loss landscape is locally convex at local minima. Panel (b): Loss landscape ng

incompatible with local convexity as the set of global minima is not locally linear. o edu

FTINCETON UNIVETSITY UnIversIty or-vvashington




Singluar Set

L 4
u-PL* Domain { Global Minima

s




PL In Least Squares



GD on linear least squares

Let's say we are trying to solve min || X?w — y||* with GD
w




GD on linear least squares

. Let's say we are trying to solve min || X’w — y||* with GD.
w

e The gradient of the loss is equal to VWHXTW —y||* = XX"'w —y)



GD on linear least squares

Let's say we are trying to solve min || X?w — y||* with GD
w

The gradient of the loss is equal to VWHXTW — sz = X(XTw — y)
Note that

| VLo | ? = | 2XX™w - y) | ey

winXXT) || XTw =y | =i (XXT) - L(w)



GD on linear least squares

Let's say we are trying to solve min || X?w — y||* with GD
w

The gradient of the loss is equal to VWHXTW — sz = X(XTw — y)
Note that

| VLo | ? = | 2XX™w - y) | ey

winXXT) || XTw =y | =i (XXT) - L(w)

Hal that is the PL condition assuming L* = 0, which is true when data mat = full rank



GD on linear least squares

. Let's say we are trying to solve min || X’w — y||* with GD.
w

+  The gradient of the loss is equal to V|| X'w — y||* = X(XTw — y)
* Note that

| V..Lw) | 7 = | 2XXTw - y) | =y

XX || Xw -y | T 45 (xXXT) - Liw)

min min

» Halthatis the PL condition assuming L* = 0O, which is true when data mat = full rank

Lemma:

Linear least squares where rank(X) = n is PL



GD on nonlinear least squares

Let's say we are trying to solve min ||A(X; w) — y||* with GD

W




GD on nonlinear least squares

Let's say we are trying to solve min ||A(X; w) — y||* with GD
w
The gradient of the loss is equal to V [|A(X;w) — y||? = [V, h(X; w)](R(X; w) — y)




GD on nonlinear least squares

. Let's say we are trying to solve min ||A(X; w) — y||* with GD.
w
e The gradient of the loss is equal to V ||A(X; w) — y||? = [V, h(X; w)](R(X; w) — y)

o letusrefertoJ(w) =V h(X;w) € R 35 the Jacobian of the predictions



GD on nonlinear least squares

GD.
The gradient of the loss is equal to V [|A(X;w) — sz =V, A(X;w)]|(h(X;w) —y)

Let's say we are trying to solve min ||A(X; w) — y||* with

Let us refer to J(w) =V h(X;w) € R 35 the Jacobian of the predictions

Note that again , ,
| VoLow) |7 = || TG wy =y || 7 = 44

min

2
W) Iw) || Xz w) =y |



GD on nonlinear least squares

Let's say we are trying to solve min ||A(X; w) — y||* with GD
w
The gradient of the loss is equal to V [|A(X;w) — y||? = [V, h(X; w)](R(X; w) — y)

Let us refer to J(w) =V h(X;w) € R 35 the Jacobian of the predictions

Note that again

| VoLon) || “ = | JonRXw) =) || * 2 42inT 0T || 1wy =y ||

min

Hal that is the again PL condition (assuming L* = 0) with u = 44_. (X! X)

min



GD on nonlinear least squares

. Let's say we are trying to solve min ||A(X; w) — y||* with GD.
w
« The gradient of the loss is equal to V_ ||A(X;w) — y||? = [V, h(X; w)](R(X; w) — y)

o letusrefertoJ(w) =V h(X;w) € R a5 the Jacobian of the predictions

* Note that again

| VoLon) || “ = | JonRXw) =) || * 2 42inT 0T || 1wy =y ||

min

 Hal that is the again PL condition (assuming L* = 0) with u = 41_. (X! X)

min

Lemma.

Non-linear least squares where min rank(J(w(w)) = n are PL in %'
WEW



Some examples of NINLS



| -layer linear Neural Networks

Let us assume we have a |-layer linear network.

he prediction of this network is given as h(W; x) = (v, Wx) @




| -layer linear Neural Networks

Let us assume we have a |-layer linear network.

. he prediction of this network is given as h(W; x) = (v, Wx) @

assume output edges

are all fixed

A bit silly since
h(W; x) = (v, Wx) = (W', x)




| -layer linear Neural Networks

* Let us assume we have a |-layer linear network.

. he prediction of this network is given as h(W; x) = (v, Wx) @

assume output edges

are all fixed

reminder:

W) Iw)) || hXw) =y |

min

| V..Low) || = 42



| -layer linear Neural Networks

* Let us assume we have a |-layer linear network.

. he prediction of this network is given as h(W; x) = (v, Wx) @

assume output edges

are all fixed

reminder:

W) Iw)) || hXw) =y |

min

| V..Low) || = 42

ViX; ViXy ... VX

. 1 he Jacobian is equal to J(w) =V, A(W, x) = [ 5

kal VkXZ cen ka




| -layer linear Neural Networks

* Let us assume we have a |-layer linear network.

. he

| V..Low) || = 42

. 1 he Jacobian is equal to J(w) =V, A(W, x) = [ 5

orediction of this network is given as i(W; x) = (v, Wx) @

assume output edges

are all fixed

reminder:

min I || 2 w) = ||
ViX; ViXp ... VX

= de)(n

kal VkXZ cen kan

*Note that J(w) = v @ X and we know that rank(J(w)) = rank(v) - rank(X) = rank(X)



| -layer linear Neural Networks

* Let us assume we have a |-layer linear network.

. he

| V..Low) || = 42

. 1 he Jacobian is equal to J(w) =V, A(W, x) = [ 5

orediction of this network is given as i(W; x) = (v, Wx) @

assume output edges

are all fixed

reminder:

W) Iw)) || hXw) =y |

min

ViX; ViXy ... VX

= de)(n

kal VkXZ cen kan

*Note that J(w) = v @ X and we know that rank(J(w)) = rank(v) - rank(X) = rank(X)

*Hence, again If the matrix of data points is full rank n, then the cost function is PL.



| -layer linear Neural Networks

* Let us assume we have a |-layer linear network.

. he

| V..Low) || = 42

. 1 he Jacobian is equal to J(w) =V, A(W, x) = [ 5

orediction of this network is given as i(W; x) = (v, Wx) @

assume output edges

are all fixed

reminder:

W) Iw)) || hXw) =y |

min

ViX; ViXy ... VX

= de)(n

kal VkXZ cen kan

*Note that J(w) = v @ X and we know that rank(J(w)) = rank(v) - rank(X) = rank(X)

*Hence, again If the matrix of data points is full rank n, then the cost function is PL.



| -layer leaky RelLU Neural Networks

Let us assume we have a |-layer linear network

he prediction of this network is given as h(W; x) = (v, o(Wx))

% assume output edges
are all fixed




| -layer leaky RelLU Neural Networks

* Let us assume we have a |-layer linear network
. he prediction of this network is given as h(W; x) = (v, 6(Wx))

assume output edges

are all fixed
reminder:

| Vo Low) ||~ 2 42l 0) Iw)) || G w) —y |

min




| -layer leaky RelLU Neural Networks

* Let us assume we have a |-layer linear network
. he prediction of this network is given as h(W; x) = (v, 6(Wx))

assume output edges

are all fixed
reminder:

W) Iw)) || hXw) =y |

min

| V..Low) || = 42

o' ((wp,x1)) - x1 o ((w, %)X, ... o((wy,x,)) X,

The Jacobian is equal to J(w) = diag(v{{,, ..., V1))

o' ((Wex1)) X 6 ((WuX2)) Xy ... 6((w,Xx,) - x,



| -layer leaky RelLU Neural Networks

* Let us assume we have a |-layer linear network
. he prediction of this network is given as h(W; x) = (v, 6(Wx))

assume output edges

are all fixed
reminder:

| Vo Low) || * 2 4in@ 0 Tw) || X w) =y |

min

o' ((wp,x1)) - x1 o ((w, %)X, ... o((wy,x,)) X,

The Jacobian is equal to J(w) = diag(v{{,, ..., V1))

o' ((Wex1)) X 6 ((WuX2)) Xy ... 6((w,Xx,) - x,

Note rank(J(w)) = n if the rank of the data matrix is n and also at least one activation has nonzero
derivate for all models.




Next time: More result on NNs/N K/
Overparameterization



Karimi, H., Nutini, J. and Schmidt, M., 2016, September. Linear convergence of gradient and proximal-gradient methods under the polyak-tojasiewicz
condition. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases

http://www.optimization-online.org/DB_FILE/20 |1 6/08/5590.pdf

Soudry, D. and Carmon, Y, 201 6. No bad local minima: Data independent training error guarantees for multilayer neural networks. arXiv preprint
arXiv:1605.08361.

https://arxiv.org/pdf/ | 605.0836 |

Du, S.S,, Zhai, X,, Poczos, B. and Singh, A, 201 8. Gradient descent provably optimizes over-parameterized neural networks. ICLR 2019
https://arxiv.org/pdf/ | 810.02054

Allen-Zhu, Z., Li, Y. and Song, Z., 2019, May. A convergence theory for deep learning via over-parameterization. In International Conference on
Machine Learning (pp. 242-252). PMLR
http://proceedings.mlrpress/v9//allen-zhu | 9a/allen-zhu [ 9a.pdf

Du, S, Lee, |, Li, H,Wang, L. and Zhai, X, 2019, May. Gradient descent finds global minima of deep neural networks. In International conference on
machine learning (pp. | 6/5-1685). PMLR.
http://proceedings.mlrpress/v9//dul 9c/dul 9c.pdf

Liu, C., Zhu, L. and Belkin, M., 2022. Loss landscapes and optimization in over-parameterized non-linear systems and neural networks. Applied and
Computational Harmonic Analysis.

Vancouver
https://arxiv.org/abs/2003.00307/



