
ECE826 Lecture 9:

The PL Land of Nonconvexity
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Minimizing the Empirical Risk
• The empirical cost function that we have access to

• Question: Can we approximate the solution to this minimization? If so 
how fast?

• The answer must depend on:  
        1) , the sample size 
        2) , the hypothesis class and loss function 
        3) , the data distribution

           4) the optimization algorithm that outputs our classifier

n
ℋ
𝒟

min
h∈ℋ (RS[h] =

1
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∑
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ℓ(h(xi); yi))



Last time: From GD to SGD



• Note: we haven’t used the fact that 

• Idea (‘50s, ‘60s [Robbins, Monro], [Widrow, Hoff]):  
instead of computing  we can sample one  at random and compute its gradient

• Why does that make sense? In “expectation” it’s the same algorithm, i.e., 
 

f(w) =
1
n

n

∑
i=1

fi(w)

∇f(w) fi

Ei∼uniform∇fi = ∑
i

1
n

∇fi = ∇f(w)

Gradient Descent Method:                wk+1 = wk − γ∇f(wk)

Last time: Can we make GD faster?

SGD:                                 wk+1 = wk − γ∇fik(wk)

The Uber-Algorithm



Convergence rates for SGD
Corollary:

SGD with constant stepwise achieves exponential convergence till error an error floor of 

 and after that achieves a rate of  for arbitrary errors.𝔼∥wk+1 − w*∥2 ≥ ϵ ⋅ O ( L2

λ2 ) O(1/T)

How does SGD compare with GD?



Proposition:

The function  is 

• -Lipschitz 

• -smooth and 

• -strongly convex

f(w) =
1
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∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

( 1
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i

∥xi∥ + λ ⋅ max
w∈𝒲

∥w∥)
( 1

4n ∑
i

∥xi∥2 + λ)
λ

Let’s make some assumptions:
 ∥xi∥,∥w∥ = O ( d)

λ = O(1)

Computational complexity of GD

Total GD computational cost
O (TGD

ϵ ⋅ cost(∇f )) = O (nnz(X) ⋅ d log ( d
ϵ ))

= O (nd2 log ( d
ϵ ))

Total GD computational cost

O (TSGD
ϵ ⋅ 𝔼   
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• SGD is faster than GD (for regularized logistic regression and in the worst case) as long as 
nd2 log ( d

ϵ ) ≥
d2

ϵ
log ( d

ϵ )
⟹ ϵ ≥

1
n



OK what do I do in practice?

[Recht, Hardt, book 2021]



Convergence for Nonconvex 
functions?



SGD/GD on general non convex functions?
Theorem

Let  be a -smooth function with -bounded stoch. gradients (i.e., ). Then, the gradients of 
SGD with step-size  satisfy

 

f(w) β L 𝔼i∥∇fi(w)∥ ≤ L
γ =

R
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𝔼∥∇f(wk)∥2 ≤ 2
RβL2

T

Proof:
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This is a very slow rate, that is very conservative. Makes sense!

It also doesn’t tell us anything about the quality of the solution that SGD finds

SGD/GD on general non convex functions?



GD on Polyak-Łojasiewicz functions
Theorem

Let  be a -smooth, -PL function (i.e., . 

Then, GD with with step-size  satisfies
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PL-like conditions hold in neighborhoods around initialization/optima.
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PL in Least Squares



GD on linear least squares
• Let’s say we are trying to solve  with GD.min

w
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• Ha! that is the PL condition assuming , which is true when data mat = full rank
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Lemma:

Linear least squares where  is PLrank(X) = n
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GD on nonlinear least squares
• Let’s say we are trying to solve  with GD.min

w
∥h(X; w) − y∥2



GD on nonlinear least squares
• Let’s say we are trying to solve  with GD.

• The gradient of the loss is equal to 

min
w

∥h(X; w) − y∥2

∇w∥h(X; w) − y∥2 = [∇wh(X; w)](h(X; w) − y)



GD on nonlinear least squares
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• The gradient of the loss is equal to 

• Let us refer to  as the Jacobian of the predictions
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Lemma:

Non-linear least squares where  are PL in min
w∈𝒲

rank(J(w(w)) = n 𝒲

GD on nonlinear least squares
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Some examples of NNLS



1-layer linear Neural Networks
• Let us assume we have a 1-layer linear network.
• The prediction of this network is given as h(W; x) = ⟨v, Wx⟩

σ(x) = x
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• Let us assume we have a 1-layer linear network.
• The prediction of this network is given as h(W; x) = ⟨v, Wx⟩

σ(x) = x

assume output edges 
are all fixed

A bit silly since 
 h(W; x) = ⟨v, Wx⟩ = ⟨w′￼
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•Hence, again if the matrix of data points is full rank , then the cost function is PL.
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1-layer leaky ReLU Neural Networks
• Let us assume we have a 1-layer linear network
• The prediction of this network is given as 

The Jacobian is equal to 
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1-layer leaky ReLU Neural Networks
• Let us assume we have a 1-layer linear network
• The prediction of this network is given as 

The Jacobian is equal to 

Note  if the rank of the data matrix is  and also at least one activation has nonzero 
derivate for all models.
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Next time: More result on NNs/NTK/
Overparameterization
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