
ECE826 Lecture 9:

The PL Land of Nonconvexity

Contents

• GD on general non convex functions

• PL makes things faster

•Linear & Non-linear least Squares

•1-layer Neural Networks

Minimizing the Empirical Risk
• The empirical cost function that we have access to

• Question: Can we approximate the solution to this minimization? If so
how fast?

• The answer must depend on:  
 1) , the sample size 
 2) , the hypothesis class and loss function 
 3) , the data distribution

 4) the optimization algorithm that outputs our classifier

n
ℋ
𝒟

min
h∈ℋ (RS[h] =

1
n

n

∑
i=1

ℓ(h(xi); yi))

Last time: From GD to SGD

• Note: we haven’t used the fact that

• Idea (‘50s, ‘60s [Robbins, Monro], [Widrow, Hoff]):  
instead of computing we can sample one at random and compute its gradient

• Why does that make sense? In “expectation” it’s the same algorithm, i.e.,

f(w) =
1
n

n

∑
i=1

fi(w)

∇f(w) fi

Ei∼uniform∇fi = ∑
i

1
n

∇fi = ∇f(w)

Gradient Descent Method: wk+1 = wk − γ∇f(wk)

Last time: Can we make GD faster?

SGD: wk+1 = wk − γ∇fik(wk)

The Uber-Algorithm

Convergence rates for SGD
Corollary:

SGD with constant stepwise achieves exponential convergence till error an error floor of

 and after that achieves a rate of for arbitrary errors.𝔼∥wk+1 − w*∥2 ≥ ϵ ⋅ O (L2

λ2) O(1/T)

How does SGD compare with GD?

Proposition:

The function is

• -Lipschitz

• -smooth and

• -strongly convex

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

(1
n ∑

i

∥xi∥ + λ ⋅ max
w∈𝒲

∥w∥)
(1

4n ∑
i

∥xi∥2 + λ)
λ

Let’s make some assumptions:
 ∥xi∥,∥w∥ = O (d)

λ = O(1)

Computational complexity of GD

Total GD computational cost
O (TGD

ϵ ⋅ cost(∇f)) = O (nnz(X) ⋅ d log (d
ϵ))

= O (nd2 log (d
ϵ))

Total GD computational cost

O (TSGD
ϵ ⋅ 𝔼

Proposition:

The function is

• -Lipschitz

• -smooth and

• -strongly convex

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

(1
n ∑

i

∥xi∥ + λ ⋅ max
w∈𝒲

∥w∥)
(1

4n ∑
i

∥xi∥2 + λ)
λ

Let’s make some assumptions:
 ∥xi∥,∥w∥ = O (d)

λ = O(1)

Computational complexity of GD

Total GD computational cost
O (TGD

ϵ ⋅ cost(∇f)) = O (nnz(X) ⋅ d log (d
ϵ))

= O (nd2 log (d
ϵ))

Total GD computational cost

O (TSGD
ϵ ⋅ 𝔼

• SGD is faster than GD (for regularized logistic regression and in the worst case) as long as
nd2 log (d

ϵ) ≥
d2

ϵ
log (d

ϵ)
⟹ ϵ ≥

1
n

OK what do I do in practice?

[Recht, Hardt, book 2021]

Convergence for Nonconvex
functions?

SGD/GD on general non convex functions?
Theorem

Let be a -smooth function with -bounded stoch. gradients (i.e.,). Then, the gradients of
SGD with step-size satisfy

f(w) β L 𝔼i∥∇fi(w)∥ ≤ L
γ =

R
βL2T

min
k∈[T]

𝔼∥∇f(wk)∥2 ≤ 2
RβL2

T

Proof:

Theorem

Let be a -smooth function with -bounded stoch. gradients (i.e.,). Then, the gradients of
SGD with step-size satisfy

f(w) β L 𝔼i∥∇fi(w)∥ ≤ L
γ =

R
βL2T

min
k∈[T]

𝔼∥∇f(wk)∥2 ≤ 2
RβL2

T

f(wk+1) − f(wk) − ⟨∇f(wk), wk+1 − wk⟩ ≤
β
2

∥wk − wk+1∥2

⟹ 𝔼f(wk+1) − 𝔼f(wk) + γ⟨∇f(wk), ∇fsk
(wk)⟩ ≤

β
2

∥γ∇fsk
(wk)∥2

SGD/GD on general non convex functions?

Proof:

Theorem

Let be a -smooth function with -bounded stoch. gradients (i.e.,). Then, the gradients of
SGD with step-size satisfy

f(w) β L 𝔼i∥∇fi(w)∥ ≤ L
γ =

R
βL2T

min
k∈[T]

𝔼∥∇f(wk)∥2 ≤ 2
RβL2

T

f(wk+1) − f(wk) − ⟨∇f(wk), wk+1 − wk⟩ ≤
β
2

∥wk − wk+1∥2

⟹ 𝔼f(wk+1) − 𝔼f(wk) + γ⟨∇f(wk), ∇fsk
(wk)⟩ ≤

β
2

∥γ∇fsk
(wk)∥2

⟹ 𝔼f(wk+1) − 𝔼f(wk) + γ𝔼∥∇f(wk)∥2 ≤
βγ2

2
𝔼∥∇fsk

(wk)∥2

SGD/GD on general non convex functions?

Proof:

Theorem

Let be a -smooth function with -bounded stoch. gradients (i.e.,). Then, the gradients of
SGD with step-size satisfy

f(w) β L 𝔼i∥∇fi(w)∥ ≤ L
γ =

R
βL2T

min
k∈[T]

𝔼∥∇f(wk)∥2 ≤ 2
RβL2

T

f(wk+1) − f(wk) − ⟨∇f(wk), wk+1 − wk⟩ ≤
β
2

∥wk − wk+1∥2

⟹ 𝔼f(wk+1) − 𝔼f(wk) + γ⟨∇f(wk), ∇fsk
(wk)⟩ ≤

β
2

∥γ∇fsk
(wk)∥2

⟹ 𝔼f(wk+1) − 𝔼f(wk) + γ𝔼∥∇f(wk)∥2 ≤
βγ2

2
𝔼∥∇fsk

(wk)∥2

⟹ 𝔼∥∇f(wk)∥2 ≤
𝔼f(wk+1) − 𝔼f(wk)

γ
+

γL2β
2

SGD/GD on general non convex functions?

Proof:

Theorem

Let be a -smooth function with -bounded stoch. gradients (i.e.,). Then, the gradients of
SGD with step-size satisfy

f(w) β L 𝔼i∥∇fi(w)∥ ≤ L
γ =

R
βL2T

min
k∈[T]

𝔼∥∇f(wk)∥2 ≤ 2
RβL2

T

f(wk+1) − f(wk) − ⟨∇f(wk), wk+1 − wk⟩ ≤
β
2

∥wk − wk+1∥2

⟹ 𝔼f(wk+1) − 𝔼f(wk) + γ⟨∇f(wk), ∇fsk
(wk)⟩ ≤

β
2

∥γ∇fsk
(wk)∥2

⟹ 𝔼f(wk+1) − 𝔼f(wk) + γ𝔼∥∇f(wk)∥2 ≤
βγ2

2
𝔼∥∇fsk

(wk)∥2

⟹ 𝔼∥∇f(wk)∥2 ≤
𝔼f(wk+1) − 𝔼f(wk)

γ
+

γL2β
2

⟹ min
k

𝔼∥∇f(wk)∥2 ≤
1
T

T

∑
k=1

𝔼∥∇f(wk)∥2 ≤
𝔼f(w1) − f(w0)

γT
+

γL2β
2T

SGD/GD on general non convex functions?

Proof:

Proof:

Theorem

Let be a -smooth function with -bounded stoch. gradients (i.e.,). Then, the gradients of
SGD with step-size satisfy

f(w) β L 𝔼i∥∇fi(w)∥ ≤ L
γ =

R
βL2T

min
k∈[T]

𝔼∥∇f(wk)∥2 ≤ 2
RβL2

T

f(wk+1) − f(wk) − ⟨∇f(wk), wk+1 − wk⟩ ≤
β
2

∥wk − wk+1∥2

⟹ 𝔼f(wk+1) − 𝔼f(wk) + γ⟨∇f(wk), ∇fsk
(wk)⟩ ≤

β
2

∥γ∇fsk
(wk)∥2

⟹ 𝔼f(wk+1) − 𝔼f(wk) + γ𝔼∥∇f(wk)∥2 ≤
βγ2

2
𝔼∥∇fsk

(wk)∥2

⟹ 𝔼∥∇f(wk)∥2 ≤
𝔼f(wk+1) − 𝔼f(wk)

γ
+

γL2β
2

⟹ min
k

𝔼∥∇f(wk)∥2 ≤
1
T

T

∑
k=1

𝔼∥∇f(wk)∥2 ≤
𝔼f(w1) − f(w0)

γT
+

γL2β
2T

This is a very slow rate, that is very conservative. Makes sense!

It also doesn’t tell us anything about the quality of the solution that SGD finds

SGD/GD on general non convex functions?

GD on Polyak-Łojasiewicz functions
Theorem

Let be a -smooth, -PL function (i.e., .

Then, GD with with step-size satisfies

f(w) β μ ∇wL(w)
2

≥ μ(L(w) − L*)

γ =
1
L

f(wk) − f* ≤ (1 −
μ
β)

k

(f(w0) − f*)
f(wk+1) − f(wk) ≤ ⟨∇f(wk), wk+1 − wk⟩ +

β
2

∥wk − wk+1∥2

Proof:

GD on Polyak-Łojasiewicz functions
Theorem

Let be a -smooth, -PL function (i.e., .

Then, GD with with step-size satisfies

f(w) β μ ∇wL(w)
2

≥ μ(L(w) − L*)

γ =
1
L

f(wk) − f* ≤ (1 −
μ
β)

k

(f(w0) − f*)
f(wk+1) − f(wk) ≤ ⟨∇f(wk), wk+1 − wk⟩ +

β
2

∥wk − wk+1∥2

≤ − γ∥∇f(wk)∥2 +
β

2β2
∥∇f(wk)∥2

Proof:

GD on Polyak-Łojasiewicz functions
Theorem

Let be a -smooth, -PL function (i.e., .

Then, GD with with step-size satisfies

f(w) β μ ∇wL(w)
2

≥ μ(L(w) − L*)

γ =
1
L

f(wk) − f* ≤ (1 −
μ
β)

k

(f(w0) − f*)
f(wk+1) − f(wk) ≤ ⟨∇f(wk), wk+1 − wk⟩ +

β
2

∥wk − wk+1∥2

≤ − γ∥∇f(wk)∥2 +
β

2β2
∥∇f(wk)∥2

≤ −
1
β

∥∇f(wk)∥2 ≤ −
μ
β

(f(wk) − f*)

Proof:

GD on Polyak-Łojasiewicz functions
Theorem

Let be a -smooth, -PL function (i.e., .

Then, GD with with step-size satisfies

f(w) β μ ∇wL(w)
2

≥ μ(L(w) − L*)

γ =
1
L

f(wk) − f* ≤ (1 −
μ
β)

k

(f(w0) − f*)
f(wk+1) − f(wk) ≤ ⟨∇f(wk), wk+1 − wk⟩ +

β
2

∥wk − wk+1∥2

≤ − γ∥∇f(wk)∥2 +
β

2β2
∥∇f(wk)∥2

≤ −
1
β

∥∇f(wk)∥2 ≤ −
μ
β

(f(wk) − f*)

⟹ f(wk+1) − f(wk) − f* ≤ −
1
β

∥∇f(wk)∥2 ≤ −
μ
β

(f(wk) − f*) − f*

Proof:

GD on Polyak-Łojasiewicz functions
Theorem

Let be a -smooth, -PL function (i.e., .

Then, GD with with step-size satisfies

f(w) β μ ∇wL(w)
2

≥ μ(L(w) − L*)

γ =
1
L

f(wk) − f* ≤ (1 −
μ
β)

k

(f(w0) − f*)
f(wk+1) − f(wk) ≤ ⟨∇f(wk), wk+1 − wk⟩ +

β
2

∥wk − wk+1∥2

≤ − γ∥∇f(wk)∥2 +
β

2β2
∥∇f(wk)∥2

≤ −
1
β

∥∇f(wk)∥2 ≤ −
μ
β

(f(wk) − f*)

⟹ f(wk+1) − f(wk) − f* ≤ −
1
β

∥∇f(wk)∥2 ≤ −
μ
β

(f(wk) − f*) − f*

f(wk+1) − f* ≤ −
μ
β

(f(wk) − f*) − (f* − f(wk))

Proof:

GD on Polyak-Łojasiewicz functions
Theorem

Let be a -smooth, -PL function (i.e., .

Then, GD with with step-size satisfies

f(w) β μ ∇wL(w)
2

≥ μ(L(w) − L*)

γ =
1
L

f(wk) − f* ≤ (1 −
μ
β)

k

(f(w0) − f*)
f(wk+1) − f(wk) ≤ ⟨∇f(wk), wk+1 − wk⟩ +

β
2

∥wk − wk+1∥2

≤ − γ∥∇f(wk)∥2 +
β

2β2
∥∇f(wk)∥2

≤ −
1
β

∥∇f(wk)∥2 ≤ −
μ
β

(f(wk) − f*)

⟹ f(wk+1) − f(wk) − f* ≤ −
1
β

∥∇f(wk)∥2 ≤ −
μ
β

(f(wk) − f*) − f*

f(wk+1) − f* ≤ −
μ
β

(f(wk) − f*) − (f* − f(wk))

f(wk+1) − f* ≤ (1 −
μ
β)(f(wk) − f*)

Proof:

GD on Polyak-Łojasiewicz functions
Theorem

Let be a -smooth, -PL function (i.e., .

Then, GD with with step-size satisfies

f(w) β μ ∇wL(w)
2

≥ μ(L(w) − L*)

γ =
1
L

f(wk) − f* ≤ (1 −
μ
β)

k

(f(w0) − f*)
f(wk+1) − f(wk) ≤ ⟨∇f(wk), wk+1 − wk⟩ +

β
2

∥wk − wk+1∥2

≤ − γ∥∇f(wk)∥2 +
β

2β2
∥∇f(wk)∥2

≤ −
1
β

∥∇f(wk)∥2 ≤ −
μ
β

(f(wk) − f*)

⟹ f(wk+1) − f(wk) − f* ≤ −
1
β

∥∇f(wk)∥2 ≤ −
μ
β

(f(wk) − f*) − f*

f(wk+1) − f* ≤ −
μ
β

(f(wk) − f*) − (f* − f(wk))

f(wk+1) − f* ≤ (1 −
μ
β)(f(wk) − f*)

much faster rate, when is PL satisfied?

Proof:

GD on PL functions
Theorem

Let be a -smooth, -PL function (i.e., .

Then, GD with with step-size satisfies

f(w) β μ ∇wL(w)
2

≥ μ(L(w) − L*)

γ =
1
L

f(wk) − f* ≤ (1 −
μ
β)

k

(f(w0) − f*)
f(wk+1) − f(wk) ≤ ⟨∇f(wk), wk+1 − wk⟩ +

β
2

∥wk − wk+1∥2

≤ − γ∥∇f(wk)∥2 +
β

2β2
∥∇f(wk)∥2

≤ −
1
β

∥∇f(wk)∥2 ≤ −
μ
β

(f(wk) − f*)

⟹ f(wk+1) − f(wk) − f* ≤ −
1
β

∥∇f(wk)∥2 ≤ −
μ
β

(f(wk) − f*) − f*

f(wk+1) − f* ≤ −
μ
β

(f(wk) − f*) − (f* − f(wk))

f(wk+1) − f* ≤ (1 −
μ
β)(f(wk) − f*)

much faster rate, when is PL satisfied?

PL-like conditions hold in neighborhoods around initialization/optima.

PL-like conditions hold in neighborhoods around initialization/optima.

PL-like conditions hold in neighborhoods around initialization/optima.

PL in Least Squares

GD on linear least squares
• Let’s say we are trying to solve with GD.min

w
∥XTw − y∥2

GD on linear least squares
• Let’s say we are trying to solve with GD.

• The gradient of the loss is equal to

min
w

∥XTw − y∥2

∇w∥XTw − y∥2 = X(XTw − y)

GD on linear least squares
• Let’s say we are trying to solve with GD.

• The gradient of the loss is equal to
• Note that

min
w

∥XTw − y∥2

∇w∥XTw − y∥2 = X(XTw − y)

∇wL(w)
2

= 2X(XTw − y)
2

≥ 4λmin(XXT) XTw − y
2

= 4λmin(XXT) ⋅ L(w)

GD on linear least squares
• Let’s say we are trying to solve with GD.

• The gradient of the loss is equal to
• Note that

• Ha! that is the PL condition assuming , which is true when data mat = full rank

min
w

∥XTw − y∥2

∇w∥XTw − y∥2 = X(XTw − y)

∇wL(w)
2

= 2X(XTw − y)
2

≥ 4λmin(XXT) XTw − y
2

= 4λmin(XXT) ⋅ L(w)

L* = 0

Lemma:

Linear least squares where is PLrank(X) = n

GD on linear least squares
• Let’s say we are trying to solve with GD.

• The gradient of the loss is equal to
• Note that

• Ha! that is the PL condition assuming , which is true when data mat = full rank

min
w

∥XTw − y∥2

∇w∥XTw − y∥2 = X(XTw − y)

∇wL(w)
2

= 2X(XTw − y)
2

≥ 4λmin(XXT) XTw − y
2

= 4λmin(XXT) ⋅ L(w)

L* = 0

GD on nonlinear least squares
• Let’s say we are trying to solve with GD.min

w
∥h(X; w) − y∥2

GD on nonlinear least squares
• Let’s say we are trying to solve with GD.

• The gradient of the loss is equal to

min
w

∥h(X; w) − y∥2

∇w∥h(X; w) − y∥2 = [∇wh(X; w)](h(X; w) − y)

GD on nonlinear least squares
• Let’s say we are trying to solve with GD.

• The gradient of the loss is equal to

• Let us refer to as the Jacobian of the predictions

min
w

∥h(X; w) − y∥2

∇w∥h(X; w) − y∥2 = [∇wh(X; w)](h(X; w) − y)

J(w) = ∇wh(X; w) ∈ ℝd×n

GD on nonlinear least squares
• Let’s say we are trying to solve with GD.

• The gradient of the loss is equal to

• Let us refer to as the Jacobian of the predictions

• Note that again

min
w

∥h(X; w) − y∥2

∇w∥h(X; w) − y∥2 = [∇wh(X; w)](h(X; w) − y)

J(w) = ∇wh(X; w) ∈ ℝd×n

∇wL(w)
2

= J(w)(h(X; w) − y)
2

≥ 4λmin(J(w)TJ(w)) h(X; w) − y
2

GD on nonlinear least squares
• Let’s say we are trying to solve with GD.

• The gradient of the loss is equal to

• Let us refer to as the Jacobian of the predictions

• Note that again

• Ha! that is the again PL condition (assuming) with

min
w

∥h(X; w) − y∥2

∇w∥h(X; w) − y∥2 = [∇wh(X; w)](h(X; w) − y)

J(w) = ∇wh(X; w) ∈ ℝd×n

∇wL(w)
2

= J(w)(h(X; w) − y)
2

≥ 4λmin(J(w)TJ(w)) h(X; w) − y
2

L* = 0 μ = 4λmin(XTX)

Lemma:

Non-linear least squares where are PL in min
w∈𝒲

rank(J(w(w)) = n 𝒲

GD on nonlinear least squares
• Let’s say we are trying to solve with GD.

• The gradient of the loss is equal to

• Let us refer to as the Jacobian of the predictions

• Note that again

• Ha! that is the again PL condition (assuming) with

min
w

∥h(X; w) − y∥2

∇w∥h(X; w) − y∥2 = [∇wh(X; w)](h(X; w) − y)

J(w) = ∇wh(X; w) ∈ ℝd×n

∇wL(w)
2

= J(w)(h(X; w) − y)
2

≥ 4λmin(J(w)TJ(w)) h(X; w) − y
2

L* = 0 μ = 4λmin(XTX)

Some examples of NNLS

1-layer linear Neural Networks
• Let us assume we have a 1-layer linear network.
• The prediction of this network is given as h(W; x) = ⟨v, Wx⟩

σ(x) = x

1-layer linear Neural Networks
• Let us assume we have a 1-layer linear network.
• The prediction of this network is given as h(W; x) = ⟨v, Wx⟩

σ(x) = x

assume output edges
are all fixed

A bit silly since
 h(W; x) = ⟨v, Wx⟩ = ⟨w′￼

1-layer linear Neural Networks
• Let us assume we have a 1-layer linear network.
• The prediction of this network is given as h(W; x) = ⟨v, Wx⟩

σ(x) = x

assume output edges
are all fixed

reminder:
∇wL(w)

2
≥ 4λmin(J(w)TJ(w)) h(X; w) − y

2

1-layer linear Neural Networks
• Let us assume we have a 1-layer linear network.
• The prediction of this network is given as

•The Jacobian is equal to

h(W; x) = ⟨v, Wx⟩

J(w) = ∇wh(W, x) = [
v1x1 v1x2 … v1xn

⋮ ⋮ … ⋮
vkx1 vkx2 … vkxn

] ∈ ℝkd×n

σ(x) = x

assume output edges
are all fixed

reminder:
∇wL(w)

2
≥ 4λmin(J(w)TJ(w)) h(X; w) − y

2

1-layer linear Neural Networks
• Let us assume we have a 1-layer linear network.
• The prediction of this network is given as

•The Jacobian is equal to

•Note that and we know that

•

h(W; x) = ⟨v, Wx⟩

J(w) = ∇wh(W, x) = [
v1x1 v1x2 … v1xn

⋮ ⋮ … ⋮
vkx1 vkx2 … vkxn

] ∈ ℝkd×n

J(w) = v ⊗ X rank(J(w)) = rank(v) ⋅ rank(X) = rank(X)

σ(x) = x

assume output edges
are all fixed

reminder:
∇wL(w)

2
≥ 4λmin(J(w)TJ(w)) h(X; w) − y

2

1-layer linear Neural Networks
• Let us assume we have a 1-layer linear network.
• The prediction of this network is given as

•The Jacobian is equal to

•Note that and we know that

•Hence, again if the matrix of data points is full rank , then the cost function is PL.

h(W; x) = ⟨v, Wx⟩

J(w) = ∇wh(W, x) = [
v1x1 v1x2 … v1xn

⋮ ⋮ … ⋮
vkx1 vkx2 … vkxn

] ∈ ℝkd×n

J(w) = v ⊗ X rank(J(w)) = rank(v) ⋅ rank(X) = rank(X)

n

σ(x) = x

assume output edges
are all fixed

reminder:
∇wL(w)

2
≥ 4λmin(J(w)TJ(w)) h(X; w) − y

2

1-layer linear Neural Networks
• Let us assume we have a 1-layer linear network.
• The prediction of this network is given as

•The Jacobian is equal to

•Note that and we know that

•Hence, again if the matrix of data points is full rank , then the cost function is PL.

h(W; x) = ⟨v, Wx⟩

J(w) = ∇wh(W, x) = [
v1x1 v1x2 … v1xn

⋮ ⋮ … ⋮
vkx1 vkx2 … vkxn

] ∈ ℝkd×n

J(w) = v ⊗ X rank(J(w)) = rank(v) ⋅ rank(X) = rank(X)

n

σ(x) = x

assume output edges
are all fixed

reminder:
∇wL(w)

2
≥ 4λmin(J(w)TJ(w)) h(X; w) − y

2

1-layer leaky ReLU Neural Networks
• Let us assume we have a 1-layer linear network
• The prediction of this network is given as h(W; x) = ⟨v, σ(Wx)⟩

σ(x) = 1x≥0 + ϵ1x≤0

assume output edges
are all fixed

1-layer leaky ReLU Neural Networks
• Let us assume we have a 1-layer linear network
• The prediction of this network is given as h(W; x) = ⟨v, σ(Wx)⟩

σ(x) = 1x≥0 + ϵ1x≤0

assume output edges
are all fixed

reminder:
∇wL(w)

2
≥ 4λmin(J(w)TJ(w)) h(X; w) − y

2

1-layer leaky ReLU Neural Networks
• Let us assume we have a 1-layer linear network
• The prediction of this network is given as

The Jacobian is equal to

h(W; x) = ⟨v, σ(Wx)⟩

J(w) = diag(v1Id, …, vkId)[
σ′￼(⟨w1, x1⟩) ⋅ x1 σ′￼(⟨w1, x2⟩) ⋅ x2 … σ′￼(⟨w1, xn⟩) ⋅ xn

⋮ ⋮ … ⋮
σ′￼(⟨wk, x1⟩) ⋅ x1 σ′￼(⟨wk, x2⟩) ⋅ x2 … σ′￼(⟨wk, xn⟩) ⋅ xn

]

σ(x) = 1x≥0 + ϵ1x≤0

assume output edges
are all fixed

reminder:
∇wL(w)

2
≥ 4λmin(J(w)TJ(w)) h(X; w) − y

2

1-layer leaky ReLU Neural Networks
• Let us assume we have a 1-layer linear network
• The prediction of this network is given as

The Jacobian is equal to

Note if the rank of the data matrix is and also at least one activation has nonzero
derivate for all models.

h(W; x) = ⟨v, σ(Wx)⟩

J(w) = diag(v1Id, …, vkId)[
σ′￼(⟨w1, x1⟩) ⋅ x1 σ′￼(⟨w1, x2⟩) ⋅ x2 … σ′￼(⟨w1, xn⟩) ⋅ xn

⋮ ⋮ … ⋮
σ′￼(⟨wk, x1⟩) ⋅ x1 σ′￼(⟨wk, x2⟩) ⋅ x2 … σ′￼(⟨wk, xn⟩) ⋅ xn

]
rank(J(w)) = n n

σ(x) = 1x≥0 + ϵ1x≤0

assume output edges
are all fixed

reminder:
∇wL(w)

2
≥ 4λmin(J(w)TJ(w)) h(X; w) − y

2

Next time: More result on NNs/NTK/
Overparameterization

Karimi, H., Nutini, J. and Schmidt, M., 2016, September. Linear convergence of gradient and proximal-gradient methods under the polyak-łojasiewicz
condition. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases
http://www.optimization-online.org/DB_FILE/2016/08/5590.pdf

Soudry, D. and Carmon, Y., 2016. No bad local minima: Data independent training error guarantees for multilayer neural networks. arXiv preprint
arXiv:1605.08361.
https://arxiv.org/pdf/1605.08361

Du, S.S., Zhai, X., Poczos, B. and Singh, A., 2018. Gradient descent provably optimizes over-parameterized neural networks. ICLR 2019
https://arxiv.org/pdf/1810.02054

Allen-Zhu, Z., Li, Y. and Song, Z., 2019, May. A convergence theory for deep learning via over-parameterization. In International Conference on
Machine Learning (pp. 242-252). PMLR.
http://proceedings.mlr.press/v97/allen-zhu19a/allen-zhu19a.pdf

Du, S., Lee, J., Li, H., Wang, L. and Zhai, X., 2019, May. Gradient descent finds global minima of deep neural networks. In International conference on
machine learning (pp. 1675-1685). PMLR.
http://proceedings.mlr.press/v97/du19c/du19c.pdf

Liu, C., Zhu, L. and Belkin, M., 2022. Loss landscapes and optimization in over-parameterized non-linear systems and neural networks. Applied and
Computational Harmonic Analysis.
Vancouver
https://arxiv.org/abs/2003.00307

reading list

