FCEB26 Lecture /:

A Primer on SGD

Contents

o Complexity of GD

* Intro to SGD, and convergence guarantees

e Comparisons between SGD to GD

e [owards rates for nonconvex functions

Minimizing the Empirical Risk

* [he empirical cost function that we have access to

n (Ryl =~ Y £k
min = — X;)s Y
he# > ni=1 i)

e Question; Can we approximate the solution to this minimization? If so
how fast!

* [he answer must depend on:
) n, the sample size
2) # ,the hypothesis class and loss function

3) &, the data distribution
4) the optimization alsorithm that outputs our classifier

Last time: GD's Convergence Rates

Function Class

Lipschitz

smooth

Lipschitz + str. cvx

smooth + str cvx

ne structure of a function can hel

owever, we should be ca

Jtious th

D 1IN 1M

at the

Convergence Rate

DroVINg COMPpU’

hounds of com

rational complexity.

dlexity are not always tight.

How expensive 1s GD In practice!

Computational complexity ot GD

Gradient Descent Methoa:

Run the following for 1 steps
Wir1 = W =¥ V(W)

Computational complexity ot GD

Gradient Descent Methoa:

Run the following for 1 steps
Wir1 = W =¥ V(W)

unit if cost = number of V f(w) computations

total cost = O(T, - cost(Vf))

Computational complexity ot GD

Gradient Descent Methoa:

Run the following for 1 steps
Wir1 = W =¥ V(W)

e unit if cost = number of Vf(w) computations
» total cost = O(T, - cost(VY)))

o |et's see an example: logistic regression

Computational complexity ot GD

Example:

A f(w) is the logistic loss across that is both {x;, ..., x,} plus a regularizer

1 ¢ A
w)=—) lo (1 +e_yi<w’xi>) + —||w||?
fw) =~ ;:1, g !

Computational complexity ot GD

Example:

A f(w) is the logistic loss across that is both {x;, ..., x,} plus a regularizer

1 ¢ A
w)=—) lo (1 +e_yi<w’xi>) + —||w||?
fw) =~ ;:1, g !

A few facts:
e log(l+ e")is 1-Lipschitz and 1/4-smooth
o (x,w) is ||x||-Lipschitz and ||x||*-smooth

Computational complexity ot GD

Example:

A f(w) is the logistic loss across that is both {x;, ..., x,} plus a regularizer

1 < A
w)=—) lo (1 +e_yi<w’xi>) + —|lw||*
fw) =~ > log !

=1

A few facts:
e log(l + e%)is 1-Lipschitz and 1/4-smooth
o (x,w) is ||x||-Lipschitz and ||x||*-smooth
e g(gr(x))isan L; - L,-Lipschitz function
¢ g,/(x)+ g (x)isan (L; + L,)-Lipschitz function and a (f; + f,)-smooth function

Computational complexity ot GD

Example:

A f(w) is the logistic loss across that is both {x;, ..., x,} plus a regularizer

1 < A
w)=—) lo (1 +e_yi<w’xi>) + —|lw||*
fw) =~ > log !

=1

A few facts:
e log(l + e%)is 1-Lipschitz and 1/4-smooth
o (x,w) is ||x||-Lipschitz and ||x||*-smooth
e g(gr(x))isan L; - L,-Lipschitz function
¢ g,/(x)+ g (x)isan (L; + L,)-Lipschitz function and a (f; + f,)-smooth function
o o({x,w) +b)isa (B ||x]|*)-smooth function

Computational complexity of GD

Example:

A f(w) is the logistic loss across that is both {x;,...,x,} plus a regularizer

1 A
w)=—) lo (1 +e_yi<w’xi>) + —|lw||*
fw) =~ > log !

=1

A few facts:
e log(l + e%)is 1-Lipschitz and 1/4-smooth
o (x,w) is ||x||-Lipschitz and ||x||*-smooth
e g(gr(x))isan L; - L,-Lipschitz function
¢ g,/(x)+ g (x)isan (L; + L,)-Lipschitz function and a (f; + f,)-smooth function
o o({x,w) +b)isa (B |x]|*)-smooth function

What properties does the regularized log. loss ERM have!

Computational complexity ot GD

Proposition:

1 « A
The function f(lw) = — Z log (1 + e_yl'<w’xi>> + —||w||? is
n = 2

Computational complexity ot GD

Proposition:

1 « 1
The function f(w) = — Z log (1 1 e_yi<W,Xi>> + = |[wl|?is
=l 2

1
. (— Z |x:|| + A - max HWH)—Lipschitz
n ; weEW

Computational complexity ot GD

Proposition:

1 « 1
The function f(w) = — Z log (1 1 e_yi<W,Xi>> + = |[wl|?is
=l 2

1
. (— Z |x:|| + A - max HWH)—Lipschitz
n ; weEW

1
(4_ 2 Hxin + /l)smooth and
n -

Computational complexity ot GD

Proposition:

1 « 1
The function f(w) = — Z log (1 1 e_yi<W,Xi>> + = |[wl|?is
=l 2

1
. (— Z |x:|| + A - max HWH)—Lipschitz
n ; weEW

1
(4_ 2 Hxin + /l)smooth and
n -

» A-strongly convex

Computational complexity of GD

Proposition:

1 « 1
The function f(w) = — Z log (1 1 e—y,(w,xi)) + = |[wl|?is
=l 2

1
=D Il + 4 - max flwl|)-Lipschitz
&] wew Let's make some assumptions:
: Ll Iwll = 0 (V)
_ 112)
-\ T Z |||~ + /1) smooth and 1= o)
l

» A-strongly convex

Computational complexity of GD

Proposition:

1 « A
The function f(lw) = — Z log (1 + e_yl'<w’xi>> + —||w||? is
n = 2

1
. <— Z |x:|| + A - max HwH)—Lipschitz
n ; weEW

1
— . 2 -
-\ 7 Z || ;] +/1> smooth and 2= O()

* A-strongly convex

Let's make some assumptions:

bl vl = 0 (V)

'terations for GD to reach error €

T.=0 <§log(HwO — w*H/e))

Computational complexity of GD

Proposition:

1 « A
The function f(lw) = — Z log (1 + e_yl'<w’xi>> + —||w||? is
n = 2

1
=D Il + 4 - max flwl|)-Lipschitz
&] wew Let's make some assumptions:
: Ll Iwll = 0 (V)
_ 112]
-\ T Z |||~ + ﬂ) smooth and 1= o)
l

* A-strongly convex

'terations for GD to reach error €

T.=0 <§log(HwO — w*H/e))

ofowe(4)

Gradient Cost!?

Proposition:

For loss functions function written as f(w) = Z £((w, x;)) computing Vf(w) takes time O(nnz(X)) = O(nd)
i=1

Gradient Cost!?

Proposition:
For loss functions function written as f(w) = Z £((w, x;)) computing Vf(w) takes time O(nnz(X)) = O(nd)

=1

* Proof sketch: the gradient with respect to the model for each loss Is equal to

V,,e((w,x;)) =C'((w,x;)) - X;

Gradient Cost!?

Proposition:
For loss functions function written as f(w) = Z £((w, x;)) computing Vf(w) takes time O(nnz(X)) = O(nd)

=1

* Proof sketch: the gradient with respect to the model for each loss Is equal to

V,,e((w,x;)) =C'((w,x;)) - X;

* The cost of £'({w, x;)) is proportional to the cost of (w, x;)

(Gradient Cost!

Proposition:
For loss functions function written as f(w) = 2 £((w, x;)) computing Vf(w) takes time O(nnz(X)) = O(nd)

=1

* Proof sketch: the gradient with respect to the model for each loss Is equal to

V,,e((w,x;)) =C'((w,x;)) - X;

* The cost of Z'({w, x;)) is proportional to the cost of (w, x;)

One "full-batch” gradient requires a full pass over the data, and costs linear in the

size of the data set

Computational complexity of GD

Proposition:

1 « A
The function f(lw) = — Z log (1 + e_yl'<w’xi>> +—||w]||? is
n = 2

1
A =D lIxll + 4 - max [|w| |-Lipschitz
n = US4 Let's make some assumptions:
1 Ll Iwll = 0 (V)
S 112 _
n Z 1]~ + /1) smooth and 7= 0(1)
l

* A-strongly convex

'terations for GD to reach error €

T.=0 (élog(\\wo — w*H/e))

ofom(®)

Computational complexity of GD

Proposition:

1 « A
The function f(lw) = — Z log (1 + e_yl'<w’xi>> + —||w||? is
n = 2

1
.(— 3 il + 2 - max uwu)-Lipschitz
n i WEW

|
— . 2 -
™ Z ;[+ /1) smooth and 2= O()

* A-strongly convex

Let's make some assumptions:

bl vl = 0 (V)

terations for GD to reach error € Jotal computational cost

I, =0 (élog(\\w() — W*H/€)> O(T. - cost(Vf)) = O (nnz(X) . dlog (£>>

o ()

Computational complexity of GD

Proposition:

1 « A
The function f(lw) = — Z log (1 + e_yl'<w’xi>> + —||w||? is
n = 2

1
.(— 3 il + 2 - max \|wu>-upschitz
n i WEW

|
— . 2 -
™ Z ;[+ /1) smooth and 2= O()

* A-strongly convex

Let's make some assumptions:

bl vl = 0 (V)

terations for GD to reach error € lotal computational cost

I, =0 (él()g(”wo — W*WG)> O(T, - cost(Vf)) =0 (nnz(X) - d log (ﬁ)>

ofae(4))

Computational complexity of GD

Proposition:

1 +« A
The function f(lw) = — Z log (1 + e_yl'<w’xi>> + —||w||? is
n = 2

1
.(— 3 il + 2 - max \|wu>-upschitz
n i WEW

1
— . 2 -
™ Z ;[+ /1) smooth and 7= O()

* A-strongly convex

Let's make some assumptions:

bl vl = 0 (V)

In this case GD has a cost that Is linear in the number of data points, but quadratic

with regards to Input dimension = too large!

Can we make GD faster?

Gradient Descent Method: Wi = w, —y Viw,)

Can we make GD faster?

Gradient Descent Method: Wi = w, —y Viw,)

1 n
Note: we haven't used the fact that f(w) = — Z f:(w)
n
i=1

Can we make GD faster?

Gradient Descent Method: Wi = w, —y Viw,)

1 n
Note: we haven't used the fact that f(w) = — Z f:(w)
n
i=1

e J|dea <‘SOS,‘6OS 'Robbins, Monro], [Widrow, Hoﬁ‘]):
instead of computing V f(w) we can sample one f. at random and compute its gradient

Can we make GD faster?

Gradient Descent Method: Wi = w, —y Viw,)

1 n
Note: we haven't used the fact that f(w) = — Z f:(w)
n
i=1
e J|dea <‘SOS,‘6OS 'Robbins, Monro], [Widrow, Hoﬁ‘]):
instead of computing V f(w) we can sample one f. at random and compute its gradient

* Why does that make sense! In “expectation’ it's the same algorithm, I.e.,

1
E; uniform Vi = 2 " Vfi= Vfw)

Can we make GD faster?

Gradient Descent Method: Wi = W, — ¥ Viiw)

1 n
Note: we haven't used the fact that f(w) = — Z f:(w)
n
i=1

|dea (‘SOS,‘éOS 'Robbins, Monro], [Widrow, Hoﬁ‘]):
instead of computing V f(w) we can sample one f. at random and compute its gradient

Why does that make sense! In “expectation’ it's the same algorithm, I.e.,

1
E; uniform VJi = Z " Vfi= Vfw)

Wiv1 = Wi — ?’Vfik(Wk)

Can we make GD faster?

Gradient Descent Method: Wi = W, — ¥ Viiw)

1 n
Note: we haven't used the fact that f(w) = — Z f:(w)
n
i=1

|dea (‘SOS,‘éOS 'Robbins, Monro], [Widrow, Hoﬁ‘]):
instead of computing V f(w) we can sample one f. at random and compute its gradient

Why does that make sense! In “expectation’ it's the same algorithm, I.e.,

1
E; uniform VJi = 2 " Vfi= Vfw)

Wiv1 = Wi — ?’Vfik(wk)

The Uber-Algorithm

Different names and flavors

ML / Optimization / Statistics / EE

Perceptron
Incremental Gradient
Back Propagation (NNs)
Qja’s iteration (PCA)

LMS Filter

Has been around for a while, for good reasons:

Robu

Simple t

St
O

LO N

D

O
c

SC

mMment

Near-optimal learning performance *
Small computational foot-print

Theorem

te

L€

rates of SG

Convergence rates tor SGD

- f(w) be a A-strongly convex and function with L-bounded stoch. gradients (i.e.,

D with step-size y satisty
LZ
=Wy — w12 < (1 = 7D lwg — wH{|? + =

= VEw)|| £ L). Then, the

Theorem

te

L€

Convergence rates tor SGD

- f(w) be a A-strongly convex and function with L-bounded stoch. gradients (i.e.,

rates of SGD with step-size y satisty

)
‘HWk+1 — w¥||

LZ
Wi — w12 < (1 = yA)Mlwy — w||* + =

E(lwy — 7V, — w2

flw, = 24117 = 27 { VF, 00, w, = 2%) + PV, o)l

= VEw)|| £ L). Then, the

Convergence rates tor SGD

Theorem

et f(w) be a A-strongly convex and function with L-bounded stoch. gradients (i.e., E;||Vf.(w)|| £ L).Then, the
iterates of SGD with step-size y satisty

LZ
Wi — w12 < (1 = yA)Mlwy — w||* + =

2 2
Wiy — wHII2 = Ellwy — 7V, — w|

= [E|lw, — x*||* — 2/E <stk<wk>,wk - X*> + P EIVA, I

< Ef|lw, — w¥||? — 2yI[E <stk(wk),wk — w*> + y2L2

< (1 -y -mE|w, —x*||* + y*M*

Convergence rates tor SGD

Theorem

et f(w) be a A-strongly convex and function with L-bounded stoch. gradients (i.e., E;||Vf.(w)|| £ L).Then, the
iterates of SGD with step-size y satisty

LZ
Wi — w12 < (1 = yA)Mlwy — w||* + =

2 2
Wiy — wHII2 = Ellwy — 7V, — w|

= [E|lw, — x*||* — 2/E <stk<wk>,wk - X*> + P EIVA, I

< Ef|lw, — w¥||? — 2yI[E <stk(wk),wk — w*> + y2L2

< (1 -y -mE|w, —x*||* + y*M*

k
<1 —y-mEllwy—x**+), (1 = yd)y*M?
=1

Theorem

te

L€

)
‘HWk+1 — w¥||

- f(w) be a A-strong
rates of SGD with step-size y satisty

<

Convergence rates tor SGD

E(lwy — 7V, — w2

flw, = 24117 = 27 { VF, 00, w, = 2%) + PV, o)l

Ellw, = w2 = 27 (V£, (0w = w*) 4+ 7L

< (1 -y -mE|w, —x*||* + y*M*

k
<1 —y-mEllwy—x**+), (1 = yd)y*M?

=1

1
< (I =y - mYEllwy — x*|I* + —y*M°

yA

y convex and function with L-bounded stoch. gradients (l.e,,

LZ
E ([Wyepr — w12 < (1 = yA) lwg — w*I* + y—

A

= VEw)|| £ L). Then, the

Theorem

te

L€

‘HWk+1 — W*Hz

<

Convergence rates tor SGD

E(|wy — 7V, — w¥|?

flw, = 24117 = 27 { VF, 00, w, = 2%) + PV, o)l

Ellw, = w2 = 27 (V£, (0w = w*) 4+ 7L

< (1 -y -mE|w, —x*||* + y*M*

k
<1 —y-mEllwy—x**+), (1 = yd)y*M?

=1

1
< (I =y - mYEllwy — x*|I* + —y*M°

yA

- f(w) be a A-strongly convex and function with L-bounded stoch. gradients (i.e., E;[|Vf.(w)|| < L).Then, the
rates of SGD with step-size y satisty

L2
Wy = w12 < (1 =y llwg — w(1* + y—

A

Let's interpret these rates

Theorem

te

L€

rates of SG

Convergence rates tor SGD

- f(w) be a A-strongly convex and function with L-bounded stoch. gradients (i.e.,

D with step-size y satisty
LZ
=Wy — w12 < (1 = 7D lwg — wH{|? + =

e Let us set the stepwise to y = 0.1/4, then

L2
= || Wiy — w¥*||? < 0.9¥R? + O'lﬁ

= VEw)|| £ L). Then, the

Theorem

te

L€

rates of SG

Convergence rates tor SGD

- f(w) be a A-strongly convex and function with L-bounded stoch. gradients (i.e.,

D with step-size y satisty
LZ
=Wy — w12 < (1 = 7D lwg — wH{|? + =

e Let us set the stepwise to y = 0.1/4, then

LZ
=Wy — wE|? < 0.95R? +0.1—

2
L? R? ’

o Foranye>2:-0.1—,we need k =~ 42 - log — iterations.

A2 €

= VEw)|| £ L). Then, the

Theorem

te

L€

rates of SG

- f(w) be a A-strongly convex and

Convergence rates tor SGD

unction with L-bounded stoch. gradients (l.e.,

D with step-size y satis

Y

Wi — WP < (1=)M Iwg — wH|* + y—

L2

A

e Let us set the stepwise to y = 0.1/4, then

L2

L2
Wit — w¥*||? < 0.9¥R? + O.lﬁ
R2

o Foranye>2:-0.1—,we need k =~ 42 - log — iterations.

/12

€

= || VEw)|| < L). Then, the

SGD converges exponentially fast to certain “error floor”

Convergence rates tor SGD

Theorem

et f(w) be a A-strongly convex and function with L-bounded stoch. gradients (i.e., E;||Vf.(w)|| £ L).Then, the
iterates of SGD with step-size y satisty

LZ
Wi — w12 < (1 = yA)Mlwy — w||* + =

L2

. We can go beyond the error floor: E||w,, ; — w*||* < (1 — yA)*||wy — w*||* + yT

Theorem

te

L€

rates of SG

. We can go beyond the error floor:

Convergence rates tor SGD

- f(w) be a A-strongly convex and function with L-bounded stoch. gradients (i.e.,

D with step-size y satisty
LZ
=Wy — w12 < (1 = 7D lwg — wH{|? + =

= VEw)|| £ L). Then, the

IWipr = wlI? < (1 =y llwg — wH|* + y—

L2
A
e/ e/

Theorem

te

L€

rates of SG

. We can go beyond the error floor:

Convergence rates tor SGD

- f(w) be a A-strongly convex and function with L-bounded stoch. gradients (i.e.,

D with step-size y satisty
LZ
=Wy — w12 < (1 = 7D lwg — wH{|? + =

A

. Observe thatfory =€ we get to any arbitrary error within

2172

L* 1)R\
k=2—) -— log| —] iterations
A € €

IWipr = wlI? < (1 =y llwg — wH|* + y—

= VEw)|| £ L). Then, the

L2
A
e/ e/

Convergence rates tor SGD

Corollary:

SGD with constant stepwise achieves exponential convergence till error an error floor of
LZ
W — WP >€- 0 (ﬁ) and after that achieves a rate of O(1/T) for arbitrary errors.

Convergence rates tor SGD

Corollary:

SGD with constant stepwise achieves exponential convergence till error an error floor of
LZ
=Wy — W*HZ >c-0 (ﬁ) and after that achieves a rate of O(1/T) for arbitrary errors.

How does SGD compare with GD?

Computational complexity of GD

Proposition:

1 « A
The function f(lw) = — Z log (1 + e‘yi(w’xi>) + —[|w]|% is
n = 2

: - - L et's make some assumptions:
— Z |x;|| + 4 - max ||w]||]-Lipschitz p
"\ n i W=y/4

Il Iwll = 0 (V)
1
A% Z x| % + ﬂ)—smooth and
n -.

* A-strongly convex

A= 0(1)

Computational complexity of GD

Proposition:

1 « A
The function f(lw) = — Z log (1 + e‘yi(w’xi>) + —[|w]|% is
n = 2

Let's make some assumptions:

1
—) |lx|| + 4 - max ||w]||]-Lipschitz
T\ 7 zz: | wew XAl wll = O (\/c_l’)

] 1= 0()
A% Z x| % + ﬂ)—smooth and
n -

* A-strongly convex

JTotal GD computational cost

O <T€GD . cost(Vf)) =30, (rmz(X) - d log <£>)

€

ofun(?)

Computational complexity of GD

Proposition:

1 « A
The function f(lw) = — Z log (1 + e‘yi(w’xi>) + —[|w]|% is
n = 2

: - - Let's make some assumptions:
\ T 2 , |lx;|| + 4 - max HwH)—L|psch|tz P
n -
l

vew il Iwll = 0 (V)

1)= 0(1)
A\ Z x| % + ﬂ)—smooth and
n -

* A-strongly convex

JTotal GD computational cost Total SGD computational cost

d . 2
0, <T€GD . cost(Vf)) =50, (nnz(X) . d log (—)) O <T€5GD ; IEcost(Vfi)> — 0 (nzX) 1 L]

€ n

ofun(?)

Computational complexity of GD

Proposition:

1 « A
The function f(lw) = — Z log (1 + e‘yi(w’xi>) + —[|w]|% is
n = 2

: - - L et's make some assumptions:
— Z |x;|| + 4 - max ||w]||]-Lipschitz p
"\ n i W=y/4

il Iwll = 0 (V)
1
A\ Z x| % + ﬂ)—smooth and
n .

A= 0(1)
* A-strongly convex

JTotal GD computational cost Total SGD computational cost

d . 2
0, <T€GD . cost(Vf)) =50, (nnz(X) . d log (—)) O <T€5GD ; IEcost(Vfi)> — 0 (nzX) 1 L]

€ n

ofun(?)

Computational complexity ot GD

JTotal GD computational cost Total GD computational cost

d 2
O (TGGD - cost(Vf)) =0 (mz(X) -dlog (—)) 0 (T3P - Eeost(Vf)) = 0 () L,
€ n €

_0 <nd2 log (%)) =0 (d?zk’g (9)

Computational complexity ot GD

JTotal GD computational cost

O (TGGD . cost(Vf)) = (0 (HDZ(X) : leg <_

d)) 0, <T€SGD : IEcost(Vfl-)) =0 (

SG

€

ofun(?)

Total G

D computational cost

nnz(X) 1 L?

n

e A2

log (

€

)

D s faster than GD (for regularized logistic regression and in the worst case) as long as

nd’log (

d

€

)

d2
> —log
€

(

d

€

)

Computational complexity ot GD

JTotal GD computational cost

0 (TP cost(vf)) = 0 (mzoo dlog (ﬁ)) 0 (155P - Ecost(V) = 0(

ofun(?)

SG

Total GD computational cost

€

nnz(X) 1 L?

n

e A2

log (

€

)

D s faster than GD (for regularized logistic regression and in the worst case) as long as

2100 (4 s &
nd“log > —log

€ €

1
—> € 2 —
n

(

d

€

)

Computational complexity of GD

JTotal GD computational cost JTotal GD computational cost

d 2
O (TeGD + cost(Vf)) =0 (mZ(X) - d log (_>> O (TESGD - -cost(Vﬁ)) =0 nnz(X) . : : L log R
¢ n € A2 €

_0 (nd2 log (%)) =0 (d?zk’g (%))

SGD s faster than GD (for regularized logistic regression and in the worst case) as long as

2100 (L) 5 L joe (2
nd“log > —log
€ € €

|
—> € 2> —
n

1

Sounds reasonable, especially in light of best case ~ — generalization bounds
n

Beyond complexity, some thoughts

The rates of SGD are in expectation.

High probability bou

nds possible, e.g., by Markov's inec

runs of SGD (noboc

A step of GD s trivially parallelizable, but SG

y does that In practice)

Minibatches/Shuffling/stepsize selection??

uality on multiple

D IS Inherently serial.

The generalization performance of these two algorithms s different!

How about non-convex functions!?

OK what do | do In practice!
The SGD quick start guide

Newcomers to stochastic gradient descent often find all of these design choices
daunting, and it’s useful to have simple rules of thumb to get going. We recommend
the following:

1. Pick as large a minibatch size as you can given your computer’s RAM.
2. Set your momentum parameter to either 0 or 0.9. Your call!

3. Find the largest constant stepsize such that SGD doesn’t diverge. This takes
some trial and error, but you only need to be accurate to within a factor of 10
here.

4. Run SGD with this constant stepsize until the empirical risk plateaus.
5. Reduce the stepsize by a constant factor (say, 10)

6. Repeat steps 4 and 5 until you converge.

While this approach may not be the most optimal in all cases, it’s a great starting
point and is good enough for probably 90% of applications we’ve encountered.

Recht, Hardt, book 202 |]

SGD/GD on general non convex functions?

Theorem

Let f(w) be a f-smooth function with L-bounded stoch. gradients (i.e., E;||Vf(w)|| < L).Then, the gradients of

R
SGD with step-size y = satist
P Y BL2T Y

2
min E[[V /w12 < 2\/ RﬁTL

ke|T]

SGD/GD on general non convex functions?

Theorem

Let f(w) be a f-smooth function with L-bounded stoch. gradients (i.e., E;||Vf(w)|| < L).Then, the gradients of

R
SGD with step-size y = satist
P Y BL2T Y

RpL?
T

ke|T]

min E[|VAwpl® < 2\/

JWip1) = fwp) = (VW) wip — wy) < gHWk — Wyt II?

— Eflne,1) — B0 + 1 VS0, V£, 090) < 1l V1, 001

2
= Ef(w, () — Ef(wy) + yE||VA(w)||* < %E\\stk(wk)\\z
Ef(wii1) — Ef(wy) N yL’p

= E||VAwll* <
% 2

Eflw,) = f(wp) N yL*p
yT 2T

: 2 1 . 2
= min E[|Vw)|> < = D E[VAwI* <
k Tk:1

SGD/GD on general non convex functions?

Theorem

Let f(w) be a f-smooth function with L-bounded stoch. gradients (i.e., E;||Vf(w)|| < L).Then, the gradients of

R
SGD with step-size ¥y = satist
p Y BI2T Y

2
min E[[V /w12 < 2\/ RPL

ke[T) T

JWip) = fw) = (VW) wi g —wy) < gHWk — Wyt II?

This is a very slow rate, that Is very conservative

— = S / '

[t also doesn't tell us anything about the quality of the solution that SGD finds

— minE||Viw)|I2 < — Y E||VFw)|? < —— —
i | VAW L | VAW T 7

Next [Ime:
More interesting Nonconvexity

reading list

Bubeck, S., 2015, Convex Optimization: Algorithms and Complexity. Foundations and Trends® in Machine Learning, 8(3-4), pp.231-357.
https://arxiv.org/pdi/ 1405.4980.pdf

Understanding Machine Learning: From Theory to Algorithms, https://www.cs.hujLac.il/w~shais/UnderstandingMachinel earning/copy.html

Bottou, L., Curtis, FE. and Nocedal, ., 201 8. Optimization methods for large-scale machine learning. Siam Review, 60(2), pp.223-31 |.
Vancouver

https://arxiv.org/pdi/ |1 606.04838v | .pdl

Hardt, M. and Recht, B., 202 |. Patterns, predictions, and actions: A story about machine learning. arXiv preprint arXiv:2102.05242.
https://arxiv.org/pdi/2102.05242

https://www.cs.huji.ac.il/w~shais/UnderstandingMachineLearning/copy.html
https://arxiv.org/pdf/1606.04838v1.pdf

