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A Primer on SGD
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Minimizing the Empirical Risk
• The empirical cost function that we have access to

• Question: Can we approximate the solution to this minimization? If so 
how fast?

• The answer must depend on:  
        1) , the sample size 
        2) , the hypothesis class and loss function 
        3) , the data distribution

           4) the optimization algorithm that outputs our classifier
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Last time: GD’s Convergence Rates

• The structure of a function can help in improving computational complexity. 
However, we should be cautious that the bounds of complexity are not always tight.
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How expensive is GD in practice?



Gradient Descent Method:

Run the following for  steps
 

Tϵ
wk+1 = wk − γ∇f(wk)

Computational complexity of GD
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• Let’s see an example: logistic regression
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Example:

A  is the logistic loss across that is both  plus a regularizer

 

f(w) {x1, …, xn}
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A few facts:
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•  is -Lipschitz and -smooth

log(1 + ex) 1 1/4
⟨x, w⟩ ∥x∥ ∥x∥2

Example:

A  is the logistic loss across that is both  plus a regularizer

 

f(w) {x1, …, xn}

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

Computational complexity of GD



A few facts:
•  is -Lipschitz and -smooth
•  is -Lipschitz and -smooth
•  is an -Lipschitz function
•  is an -Lipschitz function and a -smooth function

log(1 + ex) 1 1/4
⟨x, w⟩ ∥x∥ ∥x∥2

g1(g2(x)) L1 ⋅ L2
g1(x) + g2(x) (L1 + L2) (β1 + β2)

Example:

A  is the logistic loss across that is both  plus a regularizer

 

f(w) {x1, …, xn}

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

Computational complexity of GD



A few facts:
•  is -Lipschitz and -smooth
•  is -Lipschitz and -smooth
•  is an -Lipschitz function
•  is an -Lipschitz function and a -smooth function
•  is a -smooth function 

log(1 + ex) 1 1/4
⟨x, w⟩ ∥x∥ ∥x∥2

g1(g2(x)) L1 ⋅ L2
g1(x) + g2(x) (L1 + L2) (β1 + β2)
g(⟨x, w⟩ + b) (β ⋅ ∥x∥2)

Example:

A  is the logistic loss across that is both  plus a regularizer

 

f(w) {x1, …, xn}

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

Computational complexity of GD



A few facts:
•  is -Lipschitz and -smooth
•  is -Lipschitz and -smooth
•  is an -Lipschitz function
•  is an -Lipschitz function and a -smooth function
•  is a -smooth function 

log(1 + ex) 1 1/4
⟨x, w⟩ ∥x∥ ∥x∥2

g1(g2(x)) L1 ⋅ L2
g1(x) + g2(x) (L1 + L2) (β1 + β2)
g(⟨x, w⟩ + b) (β ⋅ ∥x∥2)

Example:

A  is the logistic loss across that is both  plus a regularizer

 

f(w) {x1, …, xn}

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

Computational complexity of GD

What properties does the regularized log. loss ERM have?
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Proposition:
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One “full-batch” gradient requires a full pass over the data, and costs linear in the 
size of the data set
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Computational complexity of GD
Proposition:

The function  is 

• -Lipschitz 

• -smooth and 

• -strongly convex
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Let’s make some assumptions:
 ∥xi∥,∥w∥ = O ( d)

λ = O(1)

In this case GD has a cost that is linear in the number of data points, but quadratic 
with regards to input dimension = too large!



Gradient Descent Method:                wk+1 = wk − γ∇f(wk)

Can we make GD faster?
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The Uber-Algorithm

Different names and flavors

ML / Optimization / Statistics / EE
Perceptron

Incremental Gradient
Back Propagation (NNs)

Oja’s iteration (PCA)
LMS Filter 

…

Has been around for a while, for good reasons:
Robust to noise

Simple to implement
Near-optimal learning performance *

Small computational foot-print



Convergence rates for SGD
Theorem

Let  be a -strongly convex and function with -bounded stoch. gradients (i.e., ). Then, the 
iterates of SGD with step-size  satisfy
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Sounds reasonable, especially in light of best case  generalization bounds∼
1
n



Beyond complexity, some thoughts
• The rates of SGD are in expectation. 

• High probability bounds possible, e.g., by Markov’s inequality on multiple 
runs of SGD (nobody does that in practice)

• A step of GD is trivially parallelizable, but SGD is inherently serial.

• Minibatches/Shuffling/stepsize selection??

• The generalization performance of these two algorithms is different!

• How about non-convex functions?



OK what do I do in practice?

[Recht, Hardt, book 2021]



SGD/GD on general non convex functions?
Theorem

Let  be a -smooth function with -bounded stoch. gradients (i.e., ). Then, the gradients of 
SGD with step-size  satisfy

 

f(w) β L 𝔼i∥∇fi(w)∥ ≤ L
γ =

R
βL2T

min
k∈[T]

𝔼∥∇f(wk)∥2 ≤ 2
RβL2

T
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This is a very slow rate, that is very conservative

It also doesn’t tell us anything about the quality of the solution that SGD finds



Next Time: 
More interesting Nonconvexity
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