
ECE826 Lecture 7:

A Primer on SGD

Contents

• Complexity of GD

• Intro to SGD, and convergence guarantees

• Comparisons between SGD to GD

• Towards rates for nonconvex functions

Minimizing the Empirical Risk
• The empirical cost function that we have access to

• Question: Can we approximate the solution to this minimization? If so
how fast?

• The answer must depend on:
 1) , the sample size
 2) , the hypothesis class and loss function
 3) , the data distribution

 4) the optimization algorithm that outputs our classifier

n
ℋ
𝒟

min
h∈ℋ (RS[h] =

1
n

n

∑
i=1

ℓ(h(xi); yi))

Last time: GD’s Convergence Rates

• The structure of a function can help in improving computational complexity.
However, we should be cautious that the bounds of complexity are not always tight.

Function Class Convergence Rate

Lipschitz

smooth

Lipschitz + str. cvx

smooth + str. cvx

RL

T

R2β
T
L2

λT

R2e− T
κ

How expensive is GD in practice?

Gradient Descent Method:

Run the following for steps

Tϵ
wk+1 = wk − γ∇f(wk)

Computational complexity of GD

• unit if cost = number of computations

• total cost =

∇f(w)

O(Tϵ ⋅ cost(∇f))

Gradient Descent Method:

Run the following for steps

Tϵ
wk+1 = wk − γ∇f(wk)

Computational complexity of GD

• unit if cost = number of computations

• total cost =

• Let’s see an example: logistic regression

∇f(w)

O(Tϵ ⋅ cost(∇f))

Gradient Descent Method:

Run the following for steps

Tϵ
wk+1 = wk − γ∇f(wk)

Computational complexity of GD

Example:

A is the logistic loss across that is both plus a regularizer

f(w) {x1, …, xn}

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

Computational complexity of GD

A few facts:
• is -Lipschitz and -smooth
• is -Lipschitz and -smooth

log(1 + ex) 1 1/4
⟨x, w⟩ ∥x∥ ∥x∥2

Example:

A is the logistic loss across that is both plus a regularizer

f(w) {x1, …, xn}

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

Computational complexity of GD

A few facts:
• is -Lipschitz and -smooth
• is -Lipschitz and -smooth
• is an -Lipschitz function
• is an -Lipschitz function and a -smooth function

log(1 + ex) 1 1/4
⟨x, w⟩ ∥x∥ ∥x∥2

g1(g2(x)) L1 ⋅ L2
g1(x) + g2(x) (L1 + L2) (β1 + β2)

Example:

A is the logistic loss across that is both plus a regularizer

f(w) {x1, …, xn}

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

Computational complexity of GD

A few facts:
• is -Lipschitz and -smooth
• is -Lipschitz and -smooth
• is an -Lipschitz function
• is an -Lipschitz function and a -smooth function
• is a -smooth function

log(1 + ex) 1 1/4
⟨x, w⟩ ∥x∥ ∥x∥2

g1(g2(x)) L1 ⋅ L2
g1(x) + g2(x) (L1 + L2) (β1 + β2)
g(⟨x, w⟩ + b) (β ⋅ ∥x∥2)

Example:

A is the logistic loss across that is both plus a regularizer

f(w) {x1, …, xn}

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

Computational complexity of GD

A few facts:
• is -Lipschitz and -smooth
• is -Lipschitz and -smooth
• is an -Lipschitz function
• is an -Lipschitz function and a -smooth function
• is a -smooth function

log(1 + ex) 1 1/4
⟨x, w⟩ ∥x∥ ∥x∥2

g1(g2(x)) L1 ⋅ L2
g1(x) + g2(x) (L1 + L2) (β1 + β2)
g(⟨x, w⟩ + b) (β ⋅ ∥x∥2)

Example:

A is the logistic loss across that is both plus a regularizer

f(w) {x1, …, xn}

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

Computational complexity of GD

What properties does the regularized log. loss ERM have?

Proposition:

The function is f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

Computational complexity of GD

Proposition:

The function is

• -Lipschitz

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

(1
n ∑

i

∥xi∥ + λ ⋅ max
w∈𝒲

∥w∥)

Computational complexity of GD

Proposition:

The function is

• -Lipschitz

• -smooth and

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

(1
n ∑

i

∥xi∥ + λ ⋅ max
w∈𝒲

∥w∥)
(1

4n ∑
i

∥xi∥2 + λ)

Computational complexity of GD

Proposition:

The function is

• -Lipschitz

• -smooth and

• -strongly convex

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

(1
n ∑

i

∥xi∥ + λ ⋅ max
w∈𝒲

∥w∥)
(1

4n ∑
i

∥xi∥2 + λ)
λ

Computational complexity of GD

Proposition:

The function is

• -Lipschitz

• -smooth and

• -strongly convex

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

(1
n ∑

i

∥xi∥ + λ ⋅ max
w∈𝒲

∥w∥)
(1

4n ∑
i

∥xi∥2 + λ)
λ

Let’s make some assumptions:
 ∥xi∥,∥w∥ = O (d)

λ = O(1)

Computational complexity of GD

Proposition:

The function is

• -Lipschitz

• -smooth and

• -strongly convex

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

(1
n ∑

i

∥xi∥ + λ ⋅ max
w∈𝒲

∥w∥)
(1

4n ∑
i

∥xi∥2 + λ)
λ

Let’s make some assumptions:
 ∥xi∥,∥w∥ = O (d)

λ = O(1)

Iterations for GD to reach error ϵ

Tϵ = O (β
λ

log(∥w0 − w*∥/ϵ))

Computational complexity of GD

Proposition:

The function is

• -Lipschitz

• -smooth and

• -strongly convex

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

(1
n ∑

i

∥xi∥ + λ ⋅ max
w∈𝒲

∥w∥)
(1

4n ∑
i

∥xi∥2 + λ)
λ

Let’s make some assumptions:
 ∥xi∥,∥w∥ = O (d)

λ = O(1)

Iterations for GD to reach error ϵ

Tϵ = O (β
λ

log(∥w0 − w*∥/ϵ))
= O (d log (d

ϵ))

Computational complexity of GD

Gradient Cost?
Proposition:

For loss functions function written as computing takes time f(w) =
n

∑
i=1

ℓ(⟨w, xi⟩) ∇f(w) O(nnz(X)) = O(nd)

Gradient Cost?
Proposition:

For loss functions function written as computing takes time f(w) =
n

∑
i=1

ℓ(⟨w, xi⟩) ∇f(w) O(nnz(X)) = O(nd)

• Proof sketch: the gradient with respect to the model for each loss is equal to
.∇wℓ(⟨w, xi⟩) = ℓ′ (⟨w, xi⟩) ⋅ xi

Gradient Cost?
Proposition:

For loss functions function written as computing takes time f(w) =
n

∑
i=1

ℓ(⟨w, xi⟩) ∇f(w) O(nnz(X)) = O(nd)

• Proof sketch: the gradient with respect to the model for each loss is equal to
.

• The cost of is proportional to the cost of

∇wℓ(⟨w, xi⟩) = ℓ′ (⟨w, xi⟩) ⋅ xi

ℓ′ (⟨w, xi⟩) ⟨w, xi⟩

Gradient Cost?
Proposition:

For loss functions function written as computing takes time f(w) =
n

∑
i=1

ℓ(⟨w, xi⟩) ∇f(w) O(nnz(X)) = O(nd)

• Proof sketch: the gradient with respect to the model for each loss is equal to
.

• The cost of is proportional to the cost of

∇wℓ(⟨w, xi⟩) = ℓ′ (⟨w, xi⟩) ⋅ xi

ℓ′ (⟨w, xi⟩) ⟨w, xi⟩

One “full-batch” gradient requires a full pass over the data, and costs linear in the
size of the data set

Proposition:

The function is

• -Lipschitz

• -smooth and

• -strongly convex

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

(1
n ∑

i

∥xi∥ + λ ⋅ max
w∈𝒲

∥w∥)
(1

4n ∑
i

∥xi∥2 + λ)
λ

Let’s make some assumptions:
 ∥xi∥,∥w∥ = O (d)

λ = O(1)

Iterations for GD to reach error ϵ

Tϵ = O (β
λ

log(∥w0 − w*∥/ϵ))
= O (d log (d

ϵ))

Computational complexity of GD

Proposition:

The function is

• -Lipschitz

• -smooth and

• -strongly convex

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

(1
n ∑

i

∥xi∥ + λ ⋅ max
w∈𝒲

∥w∥)
(1

4n ∑
i

∥xi∥2 + λ)
λ

Let’s make some assumptions:
 ∥xi∥,∥w∥ = O (d)

λ = O(1)

Iterations for GD to reach error ϵ

Tϵ = O (β
λ

log(∥w0 − w*∥/ϵ))
= O (d log (d

ϵ))

Total computational cost

O(Tϵ ⋅ cost(∇f)) = O (nnz(X) ⋅ d log (d
ϵ))

Computational complexity of GD

Proposition:

The function is

• -Lipschitz

• -smooth and

• -strongly convex

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

(1
n ∑

i

∥xi∥ + λ ⋅ max
w∈𝒲

∥w∥)
(1

4n ∑
i

∥xi∥2 + λ)
λ

Let’s make some assumptions:
 ∥xi∥,∥w∥ = O (d)

λ = O(1)

Iterations for GD to reach error ϵ

Tϵ = O (β
λ

log(∥w0 − w*∥/ϵ))
= O (d log (d

ϵ))

Total computational cost

O(Tϵ ⋅ cost(∇f)) = O (nnz(X) ⋅ d log (d
ϵ))

= O (nd2 log (d
ϵ))

Computational complexity of GD

Computational complexity of GD
Proposition:

The function is

• -Lipschitz

• -smooth and

• -strongly convex

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

(1
n ∑

i

∥xi∥ + λ ⋅ max
w∈𝒲

∥w∥)
(1

4n ∑
i

∥xi∥2 + λ)
λ

Let’s make some assumptions:
 ∥xi∥,∥w∥ = O (d)

λ = O(1)

In this case GD has a cost that is linear in the number of data points, but quadratic
with regards to input dimension = too large!

Gradient Descent Method: wk+1 = wk − γ∇f(wk)

Can we make GD faster?

• Note: we haven’t used the fact that f(w) =
1
n

n

∑
i=1

fi(w)

Gradient Descent Method: wk+1 = wk − γ∇f(wk)

Can we make GD faster?

• Note: we haven’t used the fact that

• Idea (‘50s, ‘60s [Robbins, Monro], [Widrow, Hoff]):
instead of computing we can sample one at random and compute its gradient

f(w) =
1
n

n

∑
i=1

fi(w)

∇f(w) fi

Gradient Descent Method: wk+1 = wk − γ∇f(wk)

Can we make GD faster?

• Note: we haven’t used the fact that

• Idea (‘50s, ‘60s [Robbins, Monro], [Widrow, Hoff]):
instead of computing we can sample one at random and compute its gradient

• Why does that make sense? In “expectation” it’s the same algorithm, i.e.,

f(w) =
1
n

n

∑
i=1

fi(w)

∇f(w) fi

Ei∼uniform∇fi = ∑
i

1
n

∇fi = ∇f(w)

Gradient Descent Method: wk+1 = wk − γ∇f(wk)

Can we make GD faster?

• Note: we haven’t used the fact that

• Idea (‘50s, ‘60s [Robbins, Monro], [Widrow, Hoff]):
instead of computing we can sample one at random and compute its gradient

• Why does that make sense? In “expectation” it’s the same algorithm, i.e.,

f(w) =
1
n

n

∑
i=1

fi(w)

∇f(w) fi

Ei∼uniform∇fi = ∑
i

1
n

∇fi = ∇f(w)

Gradient Descent Method: wk+1 = wk − γ∇f(wk)

Can we make GD faster?

SGD: wk+1 = wk − γ∇fik(wk)

• Note: we haven’t used the fact that

• Idea (‘50s, ‘60s [Robbins, Monro], [Widrow, Hoff]):
instead of computing we can sample one at random and compute its gradient

• Why does that make sense? In “expectation” it’s the same algorithm, i.e.,

f(w) =
1
n

n

∑
i=1

fi(w)

∇f(w) fi

Ei∼uniform∇fi = ∑
i

1
n

∇fi = ∇f(w)

Gradient Descent Method: wk+1 = wk − γ∇f(wk)

Can we make GD faster?

SGD: wk+1 = wk − γ∇fik(wk)

The Uber-Algorithm

• Note: we haven’t used the fact that

• Idea (‘50s, ‘60s [Robbins, Monro], [Widrow, Hoff]):
instead of computing we can sample one at random and compute its gradient

• Why does that make sense? In “expectation” it’s the same algorithm, i.e.,

f(w) =
1
n

n

∑
i=1

fi(w)

∇f(w) fi

Ei∼uniform∇fi = ∑
i

1
n

∇fi = ∇f(w)

Gradient Descent Method: wk+1 = wk − γ∇f(wk)

Can we make GD faster?

SGD: wk+1 = wk − γ∇fik(wk)

The Uber-Algorithm

Different names and flavors

ML / Optimization / Statistics / EE
Perceptron

Incremental Gradient
Back Propagation (NNs)

Oja’s iteration (PCA)
LMS Filter

…

Has been around for a while, for good reasons:
Robust to noise

Simple to implement
Near-optimal learning performance *

Small computational foot-print

Convergence rates for SGD
Theorem

Let be a -strongly convex and function with -bounded stoch. gradients (i.e.,). Then, the
iterates of SGD with step-size satisfy

f(w) λ L 𝔼i∥∇fi(w)∥ ≤ L
γ

𝔼∥wk+1 − w*∥2 ≤ (1 − γλ)k∥w0 − w*∥2 + γ
L2

λ

Convergence rates for SGD

𝔼∥wk+1 − w*∥2 = 𝔼∥wk − γ∇fsk
− w*∥2

= 𝔼∥wk − x*∥2 − 2γ𝔼 ⟨∇fsk
(wk), wk − x*⟩ + γ2𝔼∥∇fsk

(wk)∥2

Theorem

Let be a -strongly convex and function with -bounded stoch. gradients (i.e.,). Then, the
iterates of SGD with step-size satisfy

f(w) λ L 𝔼i∥∇fi(w)∥ ≤ L
γ

𝔼∥wk+1 − w*∥2 ≤ (1 − γλ)k∥w0 − w*∥2 + γ
L2

λ

Convergence rates for SGD

𝔼∥wk+1 − w*∥2 = 𝔼∥wk − γ∇fsk
− w*∥2

= 𝔼∥wk − x*∥2 − 2γ𝔼 ⟨∇fsk
(wk), wk − x*⟩ + γ2𝔼∥∇fsk

(wk)∥2

≤ 𝔼∥wk − w*∥2 − 2γ𝔼 ⟨∇fsk
(wk), wk − w*⟩ + γ2L2

≤ (1 − γ ⋅ m)𝔼∥wk − x*∥2 + γ2M2

Theorem

Let be a -strongly convex and function with -bounded stoch. gradients (i.e.,). Then, the
iterates of SGD with step-size satisfy

f(w) λ L 𝔼i∥∇fi(w)∥ ≤ L
γ

𝔼∥wk+1 − w*∥2 ≤ (1 − γλ)k∥w0 − w*∥2 + γ
L2

λ

Convergence rates for SGD

𝔼∥wk+1 − w*∥2 = 𝔼∥wk − γ∇fsk
− w*∥2

= 𝔼∥wk − x*∥2 − 2γ𝔼 ⟨∇fsk
(wk), wk − x*⟩ + γ2𝔼∥∇fsk

(wk)∥2

≤ 𝔼∥wk − w*∥2 − 2γ𝔼 ⟨∇fsk
(wk), wk − w*⟩ + γ2L2

≤ (1 − γ ⋅ m)𝔼∥wk − x*∥2 + γ2M2

⋮

≤ (1 − γ ⋅ m)k𝔼∥w0 − x*∥2 +
k

∑
i=1

(1 − γλ)iγ2M2

Theorem

Let be a -strongly convex and function with -bounded stoch. gradients (i.e.,). Then, the
iterates of SGD with step-size satisfy

f(w) λ L 𝔼i∥∇fi(w)∥ ≤ L
γ

𝔼∥wk+1 − w*∥2 ≤ (1 − γλ)k∥w0 − w*∥2 + γ
L2

λ

Convergence rates for SGD

𝔼∥wk+1 − w*∥2 = 𝔼∥wk − γ∇fsk
− w*∥2

= 𝔼∥wk − x*∥2 − 2γ𝔼 ⟨∇fsk
(wk), wk − x*⟩ + γ2𝔼∥∇fsk

(wk)∥2

≤ 𝔼∥wk − w*∥2 − 2γ𝔼 ⟨∇fsk
(wk), wk − w*⟩ + γ2L2

≤ (1 − γ ⋅ m)𝔼∥wk − x*∥2 + γ2M2

⋮

≤ (1 − γ ⋅ m)k𝔼∥w0 − x*∥2 +
k

∑
i=1

(1 − γλ)iγ2M2

≤ (1 − γ ⋅ m)k𝔼∥w0 − x*∥2 +
1
γλ

γ2M2

Theorem

Let be a -strongly convex and function with -bounded stoch. gradients (i.e.,). Then, the
iterates of SGD with step-size satisfy

f(w) λ L 𝔼i∥∇fi(w)∥ ≤ L
γ

𝔼∥wk+1 − w*∥2 ≤ (1 − γλ)k∥w0 − w*∥2 + γ
L2

λ

Convergence rates for SGD

𝔼∥wk+1 − w*∥2 = 𝔼∥wk − γ∇fsk
− w*∥2

= 𝔼∥wk − x*∥2 − 2γ𝔼 ⟨∇fsk
(wk), wk − x*⟩ + γ2𝔼∥∇fsk

(wk)∥2

≤ 𝔼∥wk − w*∥2 − 2γ𝔼 ⟨∇fsk
(wk), wk − w*⟩ + γ2L2

≤ (1 − γ ⋅ m)𝔼∥wk − x*∥2 + γ2M2

⋮

≤ (1 − γ ⋅ m)k𝔼∥w0 − x*∥2 +
k

∑
i=1

(1 − γλ)iγ2M2

≤ (1 − γ ⋅ m)k𝔼∥w0 − x*∥2 +
1
γλ

γ2M2

Theorem

Let be a -strongly convex and function with -bounded stoch. gradients (i.e.,). Then, the
iterates of SGD with step-size satisfy

f(w) λ L 𝔼i∥∇fi(w)∥ ≤ L
γ

𝔼∥wk+1 − w*∥2 ≤ (1 − γλ)k∥w0 − w*∥2 + γ
L2

λ

Let’s interpret these rates

Convergence rates for SGD
Theorem

Let be a -strongly convex and function with -bounded stoch. gradients (i.e.,). Then, the
iterates of SGD with step-size satisfy

f(w) λ L 𝔼i∥∇fi(w)∥ ≤ L
γ

𝔼∥wk+1 − w*∥2 ≤ (1 − γλ)k∥w0 − w*∥2 + γ
L2

λ

• Let us set the stepwise to , then

γ = 0.1/λ

𝔼∥wk+1 − w*∥2 ≤ 0.9kR2 + 0.1
L2

λ2

Convergence rates for SGD
Theorem

Let be a -strongly convex and function with -bounded stoch. gradients (i.e.,). Then, the
iterates of SGD with step-size satisfy

f(w) λ L 𝔼i∥∇fi(w)∥ ≤ L
γ

𝔼∥wk+1 − w*∥2 ≤ (1 − γλ)k∥w0 − w*∥2 + γ
L2

λ

• Let us set the stepwise to , then

• For any , we need iterations.

γ = 0.1/λ

𝔼∥wk+1 − w*∥2 ≤ 0.9kR2 + 0.1
L2

λ2

ϵ ≥ 2 ⋅ 0.1
L2

λ2
k ≈ 42 ⋅ log

R2

ϵ

Convergence rates for SGD
Theorem

Let be a -strongly convex and function with -bounded stoch. gradients (i.e.,). Then, the
iterates of SGD with step-size satisfy

f(w) λ L 𝔼i∥∇fi(w)∥ ≤ L
γ

𝔼∥wk+1 − w*∥2 ≤ (1 − γλ)k∥w0 − w*∥2 + γ
L2

λ

SGD converges exponentially fast to certain “error floor”

• Let us set the stepwise to , then

• For any , we need iterations.

γ = 0.1/λ

𝔼∥wk+1 − w*∥2 ≤ 0.9kR2 + 0.1
L2

λ2

ϵ ≥ 2 ⋅ 0.1
L2

λ2
k ≈ 42 ⋅ log

R2

ϵ

Convergence rates for SGD
Theorem

Let be a -strongly convex and function with -bounded stoch. gradients (i.e.,). Then, the
iterates of SGD with step-size satisfy

f(w) λ L 𝔼i∥∇fi(w)∥ ≤ L
γ

𝔼∥wk+1 − w*∥2 ≤ (1 − γλ)k∥w0 − w*∥2 + γ
L2

λ

• We can go beyond the error floor: 𝔼∥wk+1 − w*∥2 ≤ (1 − γλ)k∥w0 − w*∥2 + γ
L2

λ

ε/2ε/2

Convergence rates for SGD
Theorem

Let be a -strongly convex and function with -bounded stoch. gradients (i.e.,). Then, the
iterates of SGD with step-size satisfy

f(w) λ L 𝔼i∥∇fi(w)∥ ≤ L
γ

𝔼∥wk+1 − w*∥2 ≤ (1 − γλ)k∥w0 − w*∥2 + γ
L2

λ

• We can go beyond the error floor:

•

𝔼∥wk+1 − w*∥2 ≤ (1 − γλ)k∥w0 − w*∥2 + γ
L2

λ

ε/2ε/2

Convergence rates for SGD
Theorem

Let be a -strongly convex and function with -bounded stoch. gradients (i.e.,). Then, the
iterates of SGD with step-size satisfy

f(w) λ L 𝔼i∥∇fi(w)∥ ≤ L
γ

𝔼∥wk+1 − w*∥2 ≤ (1 − γλ)k∥w0 − w*∥2 + γ
L2

λ

• We can go beyond the error floor:

• Observe that for we get to any arbitrary error within

 iterations

𝔼∥wk+1 − w*∥2 ≤ (1 − γλ)k∥w0 − w*∥2 + γ
L2

λ

γ = ϵ
λ

2L2

k = 2 (L
λ)

2

⋅
1
ϵ

⋅ log (2R
ϵ)

Convergence rates for SGD
Corollary:

SGD with constant stepwise achieves exponential convergence till error an error floor of

 and after that achieves a rate of for arbitrary errors.𝔼∥wk+1 − w*∥2 ≥ ϵ ⋅ O (L2

λ2) O(1/T)

Convergence rates for SGD
Corollary:

SGD with constant stepwise achieves exponential convergence till error an error floor of

 and after that achieves a rate of for arbitrary errors.𝔼∥wk+1 − w*∥2 ≥ ϵ ⋅ O (L2

λ2) O(1/T)

How does SGD compare with GD?

Proposition:

The function is

• -Lipschitz

• -smooth and

• -strongly convex

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

(1
n ∑

i

∥xi∥ + λ ⋅ max
w∈𝒲

∥w∥)
(1

4n ∑
i

∥xi∥2 + λ)
λ

Let’s make some assumptions:
 ∥xi∥,∥w∥ = O (d)

λ = O(1)

Computational complexity of GD

Proposition:

The function is

• -Lipschitz

• -smooth and

• -strongly convex

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

(1
n ∑

i

∥xi∥ + λ ⋅ max
w∈𝒲

∥w∥)
(1

4n ∑
i

∥xi∥2 + λ)
λ

Let’s make some assumptions:
 ∥xi∥,∥w∥ = O (d)

λ = O(1)

Total GD computational cost
O (TGD

ϵ ⋅ cost(∇f)) = O (nnz(X) ⋅ d log (d
ϵ))

= O (nd2 log (d
ϵ))

Computational complexity of GD

Proposition:

The function is

• -Lipschitz

• -smooth and

• -strongly convex

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

(1
n ∑

i

∥xi∥ + λ ⋅ max
w∈𝒲

∥w∥)
(1

4n ∑
i

∥xi∥2 + λ)
λ

Let’s make some assumptions:
 ∥xi∥,∥w∥ = O (d)

λ = O(1)

Total GD computational cost
O (TGD

ϵ ⋅ cost(∇f)) = O (nnz(X) ⋅ d log (d
ϵ))

= O (nd2 log (d
ϵ))

Computational complexity of GD

Total SGD computational cost

O (TSGD
ϵ ⋅ 𝔼cost(∇fi)) = O (nnz(X)

n
⋅

1
ϵ

⋅
L2

λ2
log (R

ϵ))
= O (d2

ϵ
log (d

ϵ))

Proposition:

The function is

• -Lipschitz

• -smooth and

• -strongly convex

f(w) =
1
n

n

∑
i=1

log (1 + e−yi⟨w,xi⟩) +
λ
2

∥w∥2

(1
n ∑

i

∥xi∥ + λ ⋅ max
w∈𝒲

∥w∥)
(1

4n ∑
i

∥xi∥2 + λ)
λ

Let’s make some assumptions:
 ∥xi∥,∥w∥ = O (d)

λ = O(1)

Total GD computational cost
O (TGD

ϵ ⋅ cost(∇f)) = O (nnz(X) ⋅ d log (d
ϵ))

= O (nd2 log (d
ϵ))

Computational complexity of GD

Total SGD computational cost

O (TSGD
ϵ ⋅ 𝔼cost(∇fi)) = O (nnz(X)

n
⋅

1
ϵ

⋅
L2

λ2
log (R

ϵ))
= O (d2

ϵ
log (d

ϵ))Note, cost doesn’t
depend on n!

Total GD computational cost
O (TGD

ϵ ⋅ cost(∇f)) = O (nnz(X) ⋅ d log (d
ϵ))

= O (nd2 log (d
ϵ))

Computational complexity of GD
Total GD computational cost

O (TSGD
ϵ ⋅ 𝔼cost(∇fi)) = O (nnz(X)

n
⋅

1
ϵ

⋅
L2

λ2
log (R

ϵ))
= O (d2

ϵ
log (d

ϵ))

Total GD computational cost
O (TGD

ϵ ⋅ cost(∇f)) = O (nnz(X) ⋅ d log (d
ϵ))

= O (nd2 log (d
ϵ))

Computational complexity of GD
Total GD computational cost

O (TSGD
ϵ ⋅ 𝔼cost(∇fi)) = O (nnz(X)

n
⋅

1
ϵ

⋅
L2

λ2
log (R

ϵ))
= O (d2

ϵ
log (d

ϵ))

• SGD is faster than GD (for regularized logistic regression and in the worst case) as long as
nd2 log (d

ϵ) ≥
d2

ϵ
log (d

ϵ)

Total GD computational cost
O (TGD

ϵ ⋅ cost(∇f)) = O (nnz(X) ⋅ d log (d
ϵ))

= O (nd2 log (d
ϵ))

Computational complexity of GD
Total GD computational cost

O (TSGD
ϵ ⋅ 𝔼cost(∇fi)) = O (nnz(X)

n
⋅

1
ϵ

⋅
L2

λ2
log (R

ϵ))
= O (d2

ϵ
log (d

ϵ))

• SGD is faster than GD (for regularized logistic regression and in the worst case) as long as
nd2 log (d

ϵ) ≥
d2

ϵ
log (d

ϵ)
⟹ ϵ ≥

1
n

Total GD computational cost
O (TGD

ϵ ⋅ cost(∇f)) = O (nnz(X) ⋅ d log (d
ϵ))

= O (nd2 log (d
ϵ))

Computational complexity of GD
Total GD computational cost

O (TSGD
ϵ ⋅ 𝔼cost(∇fi)) = O (nnz(X)

n
⋅

1
ϵ

⋅
L2

λ2
log (R

ϵ))
= O (d2

ϵ
log (d

ϵ))

• SGD is faster than GD (for regularized logistic regression and in the worst case) as long as
nd2 log (d

ϵ) ≥
d2

ϵ
log (d

ϵ)
⟹ ϵ ≥

1
n

Sounds reasonable, especially in light of best case generalization bounds∼
1
n

Beyond complexity, some thoughts
• The rates of SGD are in expectation.

• High probability bounds possible, e.g., by Markov’s inequality on multiple
runs of SGD (nobody does that in practice)

• A step of GD is trivially parallelizable, but SGD is inherently serial.

• Minibatches/Shuffling/stepsize selection??

• The generalization performance of these two algorithms is different!

• How about non-convex functions?

OK what do I do in practice?

[Recht, Hardt, book 2021]

SGD/GD on general non convex functions?
Theorem

Let be a -smooth function with -bounded stoch. gradients (i.e.,). Then, the gradients of
SGD with step-size satisfy

f(w) β L 𝔼i∥∇fi(w)∥ ≤ L
γ =

R
βL2T

min
k∈[T]

𝔼∥∇f(wk)∥2 ≤ 2
RβL2

T

Theorem

Let be a -smooth function with -bounded stoch. gradients (i.e.,). Then, the gradients of
SGD with step-size satisfy

f(w) β L 𝔼i∥∇fi(w)∥ ≤ L
γ =

R
βL2T

min
k∈[T]

𝔼∥∇f(wk)∥2 ≤ 2
RβL2

T

f(wk+1) − f(wk) − ⟨∇f(wk), wk+1 − wk⟩ ≤
β
2

∥wk − wk+1∥2

⟹ 𝔼f(wk+1) − 𝔼f(wk) + γ⟨∇f(wk), ∇fsk
(wk)⟩ ≤

β
2

∥γ∇fsk
(wk)∥2

⟹ 𝔼f(wk+1) − 𝔼f(wk) + γ𝔼∥∇f(wk)∥2 ≤
βγ2

2
𝔼∥∇fsk

(wk)∥2

⟹ 𝔼∥∇f(wk)∥2 ≤
𝔼f(wk+1) − 𝔼f(wk)

γ
+

γL2β
2

⟹ min
k

𝔼∥∇f(wk)∥2 ≤
1
T

T

∑
k=1

𝔼∥∇f(wk)∥2 ≤
𝔼f(w1) − f(w0)

γT
+

γL2β
2T

SGD/GD on general non convex functions?

SGD/GD on general non convex functions?
Theorem

Let be a -smooth function with -bounded stoch. gradients (i.e.,). Then, the gradients of
SGD with step-size satisfy

f(w) β L 𝔼i∥∇fi(w)∥ ≤ L
γ =

R
βL2T

min
k∈[T]

𝔼∥∇f(wk)∥2 ≤ 2
RβL2

T

f(wk+1) − f(wk) − ⟨∇f(wk), wk+1 − wk⟩ ≤
β
2

∥wk − wk+1∥2

⟹ 𝔼f(wk+1) − 𝔼f(wk) + γ⟨∇f(wk), ∇fsk
(wk)⟩ ≤

β
2

∥γ∇fsk
(wk)∥2

⟹ 𝔼f(wk+1) − 𝔼f(wk) + γ𝔼∥∇f(wk)∥2 ≤
βγ2

2
𝔼∥∇fsk

(wk)∥2

⟹ 𝔼∥∇f(wk)∥2 ≤
𝔼f(wk+1) − 𝔼f(wk)

γ
+

γL2β
2

⟹ min
k

𝔼∥∇f(wk)∥2 ≤
1
T

T

∑
k=1

𝔼∥∇f(wk)∥2 ≤
𝔼f(w1) − f(w0)

γT
+

γL2β
2T

This is a very slow rate, that is very conservative

It also doesn’t tell us anything about the quality of the solution that SGD finds

Next Time:
More interesting Nonconvexity

Bubeck, S., 2015. Convex Optimization: Algorithms and Complexity. Foundations and Trends® in Machine Learning, 8(3-4), pp.231-357.
https://arxiv.org/pdf/1405.4980.pdf

Understanding Machine Learning: From Theory to Algorithms, https://www.cs.huji.ac.il/w~shais/UnderstandingMachineLearning/copy.html

Bottou, L., Curtis, F.E. and Nocedal, J., 2018. Optimization methods for large-scale machine learning. Siam Review, 60(2), pp.223-311.
Vancouver
https://arxiv.org/pdf/1606.04838v1.pdf

Hardt, M. and Recht, B., 2021. Patterns, predictions, and actions: A story about machine learning. arXiv preprint arXiv:2102.05242.
https://arxiv.org/pdf/2102.05242

reading list

https://www.cs.huji.ac.il/w~shais/UnderstandingMachineLearning/copy.html
https://arxiv.org/pdf/1606.04838v1.pdf

