FCEB26 Lecture /:

A Primer on SGD
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Minimizing the Empirical Risk

* [he empirical cost function that we have access to

n ( Ryl =~ Y £k
min = — X;)s Y
he# > ni=1 i)

e Question; Can we approximate the solution to this minimization? If so
how fast!

* [he answer must depend on:
) n, the sample size
2) # ,the hypothesis class and loss function

3) &, the data distribution
4) the optimization alsorithm that outputs our classifier
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How expensive 1s GD In practice!
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Gradient Descent Methoa:

Run the following for 1 steps
Wir1 = W =¥ V(W)

e unit if cost = number of Vf(w) computations
» total cost = O(T, - cost(VY)))

o |et's see an example: logistic regression
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Computational complexity of GD

Example:

A f(w) is the logistic loss across that is both {x;,...,x,} plus a regularizer

1 A
w)=— ) lo (1 +e_yi<w’xi>) + —|lw||*
fw) =~ > log !

=1

A few facts:
e log(l + e%)is 1-Lipschitz and 1/4-smooth
o (x,w) is ||x||-Lipschitz and ||x||*-smooth
e g(gr(x))isan L; - L,-Lipschitz function
¢ g,/(x)+ g (x)isan (L; + L,)-Lipschitz function and a (f; + f,)-smooth function
o o({x,w) +b)isa (B |x]|*)-smooth function

What properties does the regularized log. loss ERM have!
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Proposition:

1 « A
The function f(lw) = — Z log (1 + e_yl'<w’xi>> + —||w||? is
n = 2

1
=D Il + 4 - max flwl| )-Lipschitz
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: Ll Iwll = 0 (V)
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* A-strongly convex

'terations for GD to reach error €

T.=0 <§log(HwO — w*H/e))

ofowe(4)
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(Gradient Cost!

Proposition:
For loss functions function written as f(w) = 2 £((w, x;)) computing Vf(w) takes time O(nnz(X)) = O(nd)

=1

* Proof sketch: the gradient with respect to the model for each loss Is equal to

V,,e((w,x;)) =C'((w,x;)) - X;

* The cost of Z'({w, x;)) is proportional to the cost of (w, x;)

One "full-batch” gradient requires a full pass over the data, and costs linear in the

size of the data set
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1 « A
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Proposition:

1 « A
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Computational complexity of GD

Proposition:

1 +« A
The function f(lw) = — Z log (1 + e_yl'<w’xi>> + —||w||? is
n = 2

1
.(— 3 il + 2 - max \|wu>-upschitz
n i WEW

1
— . 2 -
™ Z ;[ + /1) smooth and 7= O()

* A-strongly convex

Let's make some assumptions:

bl vl = 0 (V)

In this case GD has a cost that Is linear in the number of data points, but quadratic

with regards to Input dimension = too large!
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Can we make GD faster?

Gradient Descent Method: Wi = W, — ¥ Viiw)

1 n
Note: we haven't used the fact that f(w) = — Z f:(w)
n
i=1

|dea (‘SOS,‘éOS 'Robbins, Monro], [Widrow, Hoﬁ‘]):
instead of computing V f(w) we can sample one f. at random and compute its gradient

Why does that make sense! In “expectation’ it's the same algorithm, I.e.,

1
E; uniform VJi = 2 " Vfi= Vfw)

Wiv1 = Wi — ?’Vfik(wk)

The Uber-Algorithm



Different names and flavors

ML / Optimization / Statistics / EE

Perceptron
Incremental Gradient
Back Propagation (NNs)
Qja’s iteration (PCA)

LMS Filter

Has been around for a while, for good reasons:
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Near-optimal learning performance *
Small computational foot-print
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SGD converges exponentially fast to certain “error floor”
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Corollary:

SGD with constant stepwise achieves exponential convergence till error an error floor of
LZ
=Wy — W*HZ >c-0 (ﬁ) and after that achieves a rate of O(1/T) for arbitrary errors.

How does SGD compare with GD?
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Computational complexity of GD

JTotal GD computational cost JTotal GD computational cost

d 2
O (TeGD + cost( Vf)) =0 (mZ(X) - d log (_>> O (TESGD - -cost(Vﬁ)) =0 nnz(X) . : : L log R
¢ n € A2 €

_0 (nd2 log (%)) =0 (d?zk’g (%))

SGD s faster than GD (for regularized logistic regression and in the worst case) as long as
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Beyond complexity, some thoughts

The rates of SGD are in expectation.

High probability bou

nds possible, e.g., by Markov's inec

runs of SGD (noboc

A step of GD s trivially parallelizable, but SG

y does that In practice)

Minibatches/Shuffling/stepsize selection??

uality on multiple

D IS Inherently serial.

The generalization performance of these two algorithms s different!

How about non-convex functions!?



OK what do | do In practice!
The SGD quick start guide

Newcomers to stochastic gradient descent often find all of these design choices
daunting, and it’s useful to have simple rules of thumb to get going. We recommend
the following:

1. Pick as large a minibatch size as you can given your computer’s RAM.
2. Set your momentum parameter to either 0 or 0.9. Your call!

3. Find the largest constant stepsize such that SGD doesn’t diverge. This takes
some trial and error, but you only need to be accurate to within a factor of 10
here.

4. Run SGD with this constant stepsize until the empirical risk plateaus.
5. Reduce the stepsize by a constant factor (say, 10)

6. Repeat steps 4 and 5 until you converge.

While this approach may not be the most optimal in all cases, it’s a great starting
point and is good enough for probably 90% of applications we’ve encountered.

Recht, Hardt, book 202 | ]



SGD/GD on general non convex functions?

Theorem
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SGD/GD on general non convex functions?

Theorem

Let f(w) be a f-smooth function with L-bounded stoch. gradients (i.e., E;||Vf(w)|| < L).Then, the gradients of

R
SGD with step-size ¥y = satist
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This is a very slow rate, that Is very conservative

— = S / '

[t also doesn't tell us anything about the quality of the solution that SGD finds
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Next [ Ime:
More interesting Nonconvexity
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