FCEB26 Lecture /:

How fast I1s Gradient Descent!?
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Minimizing the Empirical Risk

* [he empirical cost function that we have access to

n ( Ryl =~ Y £k
min = — X;)s Y
he# > ni=1 i)

e Question; Can we approximate the solution to this minimization? If so
how fast!

* [he answer must depend on:
) n, the sample size
2) # ,the hypothesis class and loss function

3) &, the data distribution
4) the optimization alsorithm that outputs our classifier



Computational Aspects of the ERM



| ast time

e ERM Is hard

* | earning & memorizing Is hard for fixed architecture

e Memorizing Is easy, assuming arpitrary archrtecture

e Convexity can help, but by how much!?



Stop |: Convexity



First stop: Convexity

“A function that looks like a bowl!”

Def.:

A function f(w) is convex on ' if

fla-w+ (1 =a) -w) < afiw) + (1 —a)f(w)



First stop: Convexity

e “A function that looks like a bowl!”

Def.:

A function f(w) is convex on ' if

fla-w+ (1 =a) -w) < afiw) + (1 —a)f(w)

o (Convexity makes our lives much easier

(VW) w' = w) 2 fw') = fow®)

oradient Is always positively correlated with the right direction towards OPT

Let's get a bit more mileage from this



First stop: Convexity

* [he first order laylor expansion of a convex function is a “‘global under-estimate”

* Vw,wy €l ‘ Jw) = flwy) + (Vf(wg), w — wy)
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*Observe: |-st orderTaylor always has a linear form, e.g., f(w) =~ (w,a) + b

Q: what happens forwy s.1. Vf(wy) =0




Local optimization
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« Say we initialize at wy, then we could try to follow the “line” flwy) + (f(wy), w — wy)!
» Let's make our algorithm to progress by additive steps, I.e.,

Wiy = arg min 3 f05) + (VA0 w =) + 2= [lw = w1

The GD step Is the solution to the above:
Wip1 = Wi — 7 VW)

Does GD converge, and it so how fast!




Convergence rates!

Convergence rates = a promise of worst case performance not being bad

fowp) = fv¥) < p(T, £, wo)
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Convergence rates!

» (Convergence rates = a promise of worst case performance not being baad
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Convergence rates!

» (Convergence rates = a promise of worst case performance not being baad

fowp) = fv¥) < p(T, £, wo)

You would typically like p(T, f, wy) ~

poly(T')

promise

realrty

Jwr) — f(w™*)

Convergence rates can be informative in understanding what structures allow for faster algorithms and
can be good guides towards algorithm design.




GD on Lipschitz + CVX functions



LIpschitzness

* Lipschitz: “A function can't change too fast”

Def.:

A function f(w) is L-Lipschitz on ' if
fov) =) | < L [lw = wll, Y, w' €

Lipschitzness is implied by the property Vw € 7', ||Vf(w)|| < L which we will assume



How to show convergence!

Let’s start with the “under-estimator’ property of convexity

fw) = fw™) < (Vfw, we —w™) = <Wk _}/WkH

,wk—w*>.
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How to show convergence!

o Let's start with the "under-estimator’ property of convexity

fwg) = fw™) < (VAwp, w —w*) = <Wk _}/Wkﬂ > Wi — W*> -

*  We would like instead of the inner products of iterate differences to work with norms (this will be
related to the Lip. continuity)
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How to show convergence!

o Let's start with the "under-estimator’ property of convexity

fwg) = fw™) < (VAwp, w —w*) = <Wk _}/Wkﬂ > Wi — W*> -

*  We would like instead of the inner products of iterate differences to work with norms (this will be
related to the Lip. continuity)

]
. Then,rememberthat a’'b = 5(”“”2 + ||b]1* = |la — b]|*)
*  Which implies

1
Jwp) — flx™) < z_y{“wk —w*||* + Wy — Wk+1H2 — [[Wyy1 — W*Hz}
1
= 2—}/{ I = w* 1> + ly VAWOI® = lIwegy — w*II%}

yL*
)

2 2
< —{lIwe = w12 = lwepy = w12} +
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Convergence rates!

Let’s calculate the sub optimality gap for all steps:

yL*

fwp) = flw™) < _{Hwk W] = [ Wie1 — W*Hz} T )

L2

Fw_p) — fw*) <—{nwk L= w1 = Jlwg = wX2Y + yz

L2
Ffwg) — fw*) <—{uw0 w12 =y = w2} + yz




Convergence rates!

Let’s calculate the sub optimality gap for all steps:

oo *|[2 a2 L
fow) = fo*) < (= wHIE = ey — w12} + 55
LZ
o) =fov*) < -y = w1 = o =} + 25
yL’
fwg) = fw*) <—{nwo W =l = wH I} + =

T you add all these inequalities the highlighted terms go away!




Convergence rates!

Let’s calculate the sub optimality gap for all steps:

yL*

fwp) = flw™) < _{Hwk W] = [ Wie1 — W*Hz} T )

L2

Fw_p) — fw*) <—{nwk L= WP = lwy — w2+ yz

L2
Ffwg) — fw*) <—{uw0 W12 = [wy — w2} + yz

Now sum them all up!



Convergence rates!

» Let’s calculate the sub optimality gap for all steps:

L2
fwg) = flw™) < —{Hwk W = Wy — w*II2) + yz
L2
fwe_p) = fiw™) < —{HWk | — w*||* — W, — w*Hz} + 7/2
L2
flwg) — fw*) < —{HWO W2 = [lw, — w2} + yz
* Now sum them %H up! i i
— — wX X 2
3 (o) — fow) < —r T B IO Z W T

2y 2

=1



Convergence rates!

One more step..
2 2
W=+ [lwy — wX|| yL*

i (fw) = f(w™)) < Wre + T
=1 | - 27/ 2



Convergence rates!

One more step..

T 2 2
—|lwrer = wII=+ llwg — w™| yL*

D (fow) = fw®)) <

_I_
— 2y 2
wy—wX||*?  yL?
| 0 | n Y

2yT 2

T
= %g;f(wt) — fw*) <



Convergence rates!

One more step..

T 2 2
—|lwrer = wII=+ llwg — w™| yL*

+ 1

D (fw) — fw) <

=1

T
= %g;f(wt) — fw*) <

2y 2

Wy — W*Hz n }’L2
2yT 2

Due to convexity we have



Convergence rates!

One more step..
T

D (fw) — fw) <

=1

T
= %g;f(wt) — fw*) <

* 112 * 112 9)

—|w — W + llwy — W L.
Pwry = wH P+ lwg = w? Py

2y 2

Wy — W*Hz n }’L2
2yT 2

Due to convexity we have

HW() — W*Hz 7L2

I R N
f(;l;wk) ) S D fon) = for) £+



Convergence rates!

One more step..
T

D (fw) — fw) <

=1

T
= %Z,f(w» — fw*) <

* 112 * 112 9)

—|w — W + llwy — W L.
Pwry = wH P+ lwg = w? Py

2y 2

Wy — W*Hz n }’L2
2yT 2

Due to convexity we have

HW() — W*Hz 7L2

I R N
f(;l;wk) ) S D fon) = for) £+



Convergence rates!

One more step..
T

D (fw) — fw) <

=1

T
= %Z,f(w» — fw*) <

* 112 * 112 9)

—|w — W + llwy — W L.
Pwry = wH P+ lwg = w? Py

2y 2

Wy — W*Hz n }’L2
2yT 2

Due to convexity we have
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I R N
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Convergence rates!

One more step..
T

D (fow) = fw®)) <

=1

2 2
—llwrpy = w* 1" + [lwg — w™|| N yL?
2y 2

Iwo — w2 yL?

T
= %Z}f(wt) — fw*) <

2yT 2
* Due to convexity we have
| & [ & lwo —w*|I*  yL?
— Y w, ) —f(w*) < — w) — fw*) < — +
f(TZ, ) —fo) T 2S00 = 06" S S

now we get to choose... the step-sizel




Convergence rates!
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l « N
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o Lets try to minimize them as a function of the step-size



Convergence rates!
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Convergence rates!
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Convergence rates!

* We would like both of the terms on the right to be of the same order

y)
HWO — W*H VLZ

1 « " <
f(?l;Wk) —f(w™) < T =

o Lets try to minimize them as a function of the step-size
. R? .\ vyl ? . R
min y = .

r 2yT 2 I\ T

e which will leads to

f(%Zxk) — fx*) < f;; .

=1

We're done! GD on Lip+CVX functions converges at a rate of ~ _

VT



Convergence rates!

* We would like both of the terms on the right to be of the same order

y)
HWo — W*H VLZ

l « <
f(?l;Wk) —f(w™) < T =

o Lets try to minimize them as a function of the step-size

. R? N yL* R
min — y = .

T 2 f

Y Lﬁ O h
e which will leads to . NOW many
1 Z .. _RL steps for €
f(_ xk) _f(x ) < : approx?

T i=1 ﬁ

We're done! GD on Lip+CVX functions converges at a rate of ~ _

VT



GD on smooth + str; CVX functions



Str. Convexity & smoothness

Def.:

A function f(w) is A-strongly convex on #" if
A
fw) 2 fw) + (VW) w—w’) + EHW - w'||?

A
The best kind of convexity, aka flw) > f(w*) + EHW — w¥||?

Def.:

A function f(w) is f-Lipschitz on # if
VW) = VW)l <5 - [lw=will, Vw,w e #W

p

A quadratic upper bound f(w) < f(w*) + EHW — w¥||?



Str. Convexity & smoothness

Def.:

A function f(w) is A-strongly convex on " if

/ / / A 7112
Jw) Zf(W)+(Vf(W),W—W>+5HW—WH

Also, 1T f(w) is strongly convex flw) — EHWH2 s convex

Def.:

A function f(w) is f-Lipschitz on # if
VW) = VW)l < f-llw=wi,Vw,w €W

p

A quadratic upper bound f(w) < f(w*) + EHW — w¥||?



Str. Convexity & smoothness = co-coercivity

Lemma:

A f(w) that is both A-strongly and convex on ' if

(VAw) = VW), w —w') > L lw —wl|* + : IVAw) = VAW||*
’ ~ B+ B+
* what does that imply?
— ¥ AP — w2 1 2
(Vfw),w —w >Zﬁ+/1HW w¥| +ﬁ+/IHVf(W)H

Co-coercivity tells us that there Is a strong correlation between the gradient of a function and

the direction towards optimum, i.e., VAw)! (w — w*) > ci|lw — w¥*||* + C2||Vf(w)H2



Str. CVX+smoothness = exp. fast convergence

Theorem

Let f(w) be a A-strongly convex and ff-smooth function on 7. Then, the iterates of GD with step-size
2

Yy = satisty
A+ p :
lw, — wH[|* < e [lwy — wH||°

p

where k = — Is the condition number of f(w).

A



Str. CVX+smoothness = exp. fast convergence
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2

= satist
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Str. CVX+smoothness = exp. fast convergence

Theorem

Let f(w) be a A-strongly convex and ff-smooth function on 7. Then, the iterates of GD with step-size
2

= satist
Y i+ )4 |
p lw, = wH[|* < e7 % |lwy — w||°
where Kk = ~ s the condition number of f(w).

Exponentially faster than Lip+cvx!!

i 9 (@) =%

O/



Str. CVX+smoothness = exp. fast convergence
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Let f(w) be a A-strongly convex and ff-smooth function on 7. Then, the iterates of GD with step-size
2

Yy = satisty
A+ p :
2 = 2
p lw, = w*[[* < e |lwy — w¥||
where Kk = ~ s the condition number of f(w).
 We can get to error € In e = e~ F||wy — w||?
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Proof of convergence: Str.CVX+5Smooth

Let us define the iterate difference as Ay = ||wpy | — w¥||?

IWeey = wHII? = [lw, — y VAw) —w*||”

A = A, = 27(Vfw), w,— w¥) + y?|[ Vw7



Proof of convergence: Str.CVX+5Smooth

e Let us define the iterate difference as A, = HWT+1 — W*Hz
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e Let us define the iterate difference as A, = HWT+1 — W*Hz
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A
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A+p
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Proof of convergence: Str.CVX+5Smooth

e Let us define the iterate difference as A, = HWT+1 — W*Hz

IWeey = wHII? = [lw, — y VAw) —w*||”

A = A= 27V fou). = w¥) + 2IVSOI
A
2w, = w2+ 21O I?)

A+
e a2 42
= b=l = o= (1= )
B </12+2/1,B+,62—4/1,B>A

(A+p)>
< (/1—,6>2At= (1—,6//1)2At= (1_K)2At

SAI—2y<

A+ f 1 + Bl 1 + K

1 — ;e\ !
(Toe) 2= et

A\




Proof of convergence: Str.CVX+5Smooth

e Let us define the iterate difference as A, = HWT+1 — W*Hz

IWeey = wHII? = [lw, — y VAw) —w*||”

A = A= 27V fou). = w¥) + 2IVSOI
A
E v, = w2+ VSO I?)

A+p
o 9 4003
= b=l = o= (1= )
2 2
=</1 + 210+ f 4/1,B>At
(4 + p)?

(55) o= (155m) &= (520

SAI—2y<

IA

l —x\?
< ) A = e2loe(=D L A

IA




Comparison of Convergence Rates

Function Class

Lipschitz

smooth

Lipschitz + str. cvx

smooth + str cvx

ne structure of a function can hel

owever, we should be ca

Jtious th

D 1IN 1M

at the

Convergence Rate

DroVINg COMPpU’

hounds of com

rational complexity.

dlexity are not always tight.

Q: what of these properties are satisfied by practically relevant functions?




Next | Ime:

Complexity of GD on some practical problems
&
intro to SGD, the simplest learning algorithm
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