
ECE826 Lecture 7:

How fast is Gradient Descent?
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Minimizing the Empirical Risk
• The empirical cost function that we have access to

• Question: Can we approximate the solution to this minimization? If so 
how fast?

• The answer must depend on:  
        1) , the sample size 
        2) , the hypothesis class and loss function 
        3) , the data distribution

           4) the optimization algorithm that outputs our classifier
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Computational Aspects of the ERM



Last time
• ERM is hard

• Learning & memorizing is hard for fixed architecture

• Memorizing is easy, assuming arbitrary architecture

• Convexity can help, but by how much?



Stop 1: Convexity



• “A function that looks like a bowl”

First stop: Convexity

Def.:

A function  is convex on  if 
 

f(w) 𝒲
f(a ⋅ w + (1 − a) ⋅ w′ ) ≤ af(w) + (1 − a)f(w′ )



• “A function that looks like a bowl”

• Convexity makes our lives much easier

gradient is always positively correlated with the right direction towards OPT

⟨∇f(w′ ), w′ − w*⟩ ≥ f(w′ ) − f(w*)

First stop: Convexity

Def.:

A function  is convex on  if 
 

f(w) 𝒲
f(a ⋅ w + (1 − a) ⋅ w′ ) ≤ af(w) + (1 − a)f(w′ )

Let’s get a bit more mileage from this



• The first order Taylor expansion of a convex function is a “global under-estimate”
•

•Observe: 1-st order Taylor always has a linear form, e.g. , 

∀w, w0 ∈ ℝd, f(w) ≥ f(w0) + ⟨∇f(w0), w − w0⟩

f(w) ≈ ⟨w, a⟩ + b

First stop: Convexity

Q: what happens for  ?w0 s . t . ∇f(w0) = 0



• Say we initialize at , then we could try to follow the “line” !
• Let’s make our algorithm to progress by additive steps, i.e., 

 

w0 f(w0) + ⟨ f(w0), w − w0⟩

wk+1 = arg min
w∈𝒲 {f(wk) + ⟨∇f(wk, w − wk⟩ +

1
2γ

∥w − wk∥2}

Local optimization

The GD step is the solution to the above: 
 wk+1 = wk − γ∇f(wk)

Does GD converge, and if so how fast?



• Convergence rates = a promise of worst case performance not being bad
   f(wT) − f(w*) ≤ ρ(T, f, w0)

Convergence rates?
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• Convergence rates = a promise of worst case performance not being bad
   f(wT) − f(w*) ≤ ρ(T, f, w0)

Convergence rates?

You would typically like ρ(T, f, w0) ∼
1

poly(T)

• Warning 1: Worst case bounds may be too pessimistic and not too close to reality.
• Warning 2: If A has faster convergence rate than B, doesn’t mean A is faster than B in practice
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• Convergence rates = a promise of worst case performance not being bad
   f(wT) − f(w*) ≤ ρ(T, f, w0)

Convergence rates?

You would typically like ρ(T, f, w0) ∼
1

poly(T)

• Warning 1: Worst case bounds may be too pessimistic and not too close to reality.
• Warning 2: If A has faster convergence rate than B, doesn’t mean A is faster than B in practice

f(w
T)

−
f(w

*)

T

promise

reality

Convergence rates can be informative in understanding what structures allow for faster algorithms and 
can be good guides towards algorithm design.



GD on Lipschitz + CVX functions



• Lipschitz: “A function can’t change too fast”

Lipschitzness is implied by the property  which we will assume∀w ∈ 𝒲, ∥∇f(w)∥ ≤ L

Lipschitzness

Def.:

A function  is -Lipschitz on  if 
 

f(w) L 𝒲
| f(w) − f(w′ ) | ≤ L ⋅ ∥w − w′ ∥, ∀w, w′ ∈ 𝒲



• Let’s start with the “under-estimator” property of convexity 
 f(wk) − f(w⋆) ≤ ⟨∇f(wk), wk − w⋆⟩ = ⟨wk − wk+1

γ
, wk − w⋆⟩ .

How to show convergence?



• Let’s start with the “under-estimator” property of convexity 
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• Let’s calculate the sub optimality gap for all steps:
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If you add all these inequalities the highlighted terms go away!
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additive term is bothering menow we get to choose… the step-size!



• We would like both of the terms on the right to be of the same order
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Q: how many 
steps for ε 
approx?

We’re done! GD on Lip+CVX functions converges at a rate of ∼
1

T



GD on smooth + str. CVX functions



• The best kind of convexity, aka 

•A quadratic upper bound 

f(w) ≥ f(w*) +
λ
2

∥w − w*∥2

f(w) ≤ f(w*) +
β
2

∥w − w*∥2

Str. Convexity & smoothness

Def.:

A function  is -Lipschitz on  if 
 

f(w) β 𝒲
∥∇f(w) − ∇f(w′ )∥ ≤ β ⋅ ∥w − w′ ∥, ∀w, w′ ∈ 𝒲

Def.:
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• what does that imply?

Str. Convexity & smoothness = co-coercivity
Lemma:

A  that is both -strongly and convex on  if 

 

f(w) λ 𝒲
⟨∇f(w) − ∇f(w′ ), w − w′ ⟩ ≥

λβ
β + λ

∥w − w′ ∥2 +
1

β + λ
∥∇f(w) − ∇f(w′ )∥2

⟨∇f(w), w − w*⟩ ≥
λβ

β + λ
∥w − w*∥2 +

1
β + λ

∥∇f(w)∥2

Co-coercivity tells us that there is a strong correlation between the gradient of a function and 
the direction towards optimum, i.e., ∇f(w)T(w − w*) ≥ c1∥w − w*∥2 + c2∥∇f(w)∥2



Str. CVX+smoothness = exp. fast convergence
Theorem

Let  be a -strongly convex and -smooth function on . Then, the iterates of GD with step-size 
 satisfy
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where  is the condition number of . 

f(w) λ β 𝒲
γ =

2
λ + β

∥wt − w*∥2 ≤ e− 2t
κ ∥w0 − w*∥2

κ =
β
λ

f(w)

• We can get to error  inϵ ϵ = e− 2T
κ ∥w0 − w*∥2

⇒
ϵ

∥w0 − w*∥2
= e− 2T

κ

⇒ ln ( ϵ
∥w0 − w*∥2 ) = −

2T
κ

T =
κ
2

ln ( ∥w0 − w*∥2

ϵ )



Proof of convergence: Str.CVX+Smooth
• Let us define the iterate difference as  ΔT = ∥wT+1 − w*∥2

∥wt+1 − w*∥2 = ∥wt − γ∇f(wt) − w * ∥2

Δt+1 = Δt − 2γ⟨∇f(wt), wt − w*⟩ + γ2∥∇f(wt)∥2



Proof of convergence: Str.CVX+Smooth
• Let us define the iterate difference as  ΔT = ∥wT+1 − w*∥2

∥wt+1 − w*∥2 = ∥wt − γ∇f(wt) − w * ∥2

Δt+1 = Δt − 2γ⟨∇f(wt), wt − w*⟩ + γ2∥∇f(wt)∥2

≤ Δt − 2γ( λβ
λ + β

∥wt − w*∥2 + γ2∥∇f(wt)∥2)



Proof of convergence: Str.CVX+Smooth
• Let us define the iterate difference as  ΔT = ∥wT+1 − w*∥2

∥wt+1 − w*∥2 = ∥wt − γ∇f(wt) − w * ∥2

Δt+1 = Δt − 2γ⟨∇f(wt), wt − w*⟩ + γ2∥∇f(wt)∥2

≤ Δt − 2γ( λβ
λ + β

∥wt − w*∥2 + γ2∥∇f(wt)∥2)
= ∥wt − w*∥ −

4λβ
(λ + β)2

Δt = (1 −
4λβ

(λ + β)2 )Δt



Proof of convergence: Str.CVX+Smooth
• Let us define the iterate difference as  ΔT = ∥wT+1 − w*∥2

∥wt+1 − w*∥2 = ∥wt − γ∇f(wt) − w * ∥2

Δt+1 = Δt − 2γ⟨∇f(wt), wt − w*⟩ + γ2∥∇f(wt)∥2

≤ Δt − 2γ( λβ
λ + β

∥wt − w*∥2 + γ2∥∇f(wt)∥2)
= ∥wt − w*∥ −

4λβ
(λ + β)2

Δt = (1 −
4λβ

(λ + β)2 )Δt

= (λ2 + 2λβ + β2 − 4λβ
(λ + β)2 )Δt



Proof of convergence: Str.CVX+Smooth
• Let us define the iterate difference as  ΔT = ∥wT+1 − w*∥2

∥wt+1 − w*∥2 = ∥wt − γ∇f(wt) − w * ∥2

Δt+1 = Δt − 2γ⟨∇f(wt), wt − w*⟩ + γ2∥∇f(wt)∥2

≤ Δt − 2γ( λβ
λ + β

∥wt − w*∥2 + γ2∥∇f(wt)∥2)
= ∥wt − w*∥ −

4λβ
(λ + β)2

Δt = (1 −
4λβ

(λ + β)2 )Δt

= (λ2 + 2λβ + β2 − 4λβ
(λ + β)2 )Δt

≤ (λ − β
λ + β )

2
Δt = (1 − β/λ

1 + β/λ )
2
Δt = (1 − κ

1 + κ )2Δt



Proof of convergence: Str.CVX+Smooth
• Let us define the iterate difference as  ΔT = ∥wT+1 − w*∥2

∥wt+1 − w*∥2 = ∥wt − γ∇f(wt) − w * ∥2

Δt+1 = Δt − 2γ⟨∇f(wt), wt − w*⟩ + γ2∥∇f(wt)∥2

≤ Δt − 2γ( λβ
λ + β

∥wt − w*∥2 + γ2∥∇f(wt)∥2)
= ∥wt − w*∥ −

4λβ
(λ + β)2

Δt = (1 −
4λβ

(λ + β)2 )Δt

= (λ2 + 2λβ + β2 − 4λβ
(λ + β)2 )Δt

≤ (λ − β
λ + β )

2
Δt = (1 − β/λ

1 + β/λ )
2
Δt = (1 − κ

1 + κ )2Δt

⋮

≤ (1 − κ
1 + κ )

t
⋅ Δ0 = e2t log(1− 2

κ ) ⋅ Δ0



Proof of convergence: Str.CVX+Smooth
• Let us define the iterate difference as  ΔT = ∥wT+1 − w*∥2

∥wt+1 − w*∥2 = ∥wt − γ∇f(wt) − w * ∥2

Δt+1 = Δt − 2γ⟨∇f(wt), wt − w*⟩ + γ2∥∇f(wt)∥2

≤ Δt − 2γ( λβ
λ + β

∥wt − w*∥2 + γ2∥∇f(wt)∥2)
= ∥wt − w*∥ −

4λβ
(λ + β)2

Δt = (1 −
4λβ

(λ + β)2 )Δt

= (λ2 + 2λβ + β2 − 4λβ
(λ + β)2 )Δt

≤ (λ − β
λ + β )

2
Δt = (1 − β/λ

1 + β/λ )
2
Δt = (1 − κ

1 + κ )2Δt

⋮

≤ (1 − κ
1 + κ )

t
⋅ Δ0 = e2t log(1− 2

κ ) ⋅ Δ0

≤ e− 2t
κ ⋅ Δ0



Comparison of Convergence Rates

• The structure of a function can help in improving computational complexity. 
However, we should be cautious that the bounds of complexity are not always tight.

Function Class Convergence Rate

Lipschitz

smooth

Lipschitz + str. cvx

smooth + str. cvx

RL

T

R2β
T
L2

λT

R2e− T
κ

Q: what of these properties are satisfied by practically relevant functions?



Next Time: 
Complexity of GD on some practical problems

&
intro to SGD, the simplest learning algorithm
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