FCE826 Lecture 6:

Computational aspects of ERM and Intro
to Gradient-based Algorithms



Contents

* From statistical bounds to optimization

e Computational aspects of the ERM

* VWhat can we not do, computationally?
* What can we do! First stop: Convexity

* [ he proliferation of gradients



Some Definrtions

e Our goal is to find a hypothesis (classifier) h¢ with small expected risk
R[hS] — [E(x,y)NQZ [f(hS(x)ay)]

* [he loss measures the disagreement between predictions and reality

e Since we can't directly measure R|[hq| (our true cost function), we can
consider optimizing Its sample-average proxy, 1.e., the empirical risk

R | <
R [hs] — ; lzzl £ (hs(xi)a yi)



Minimizing the Empirical Risk

* [he gap of the true cost function from the one we have access to

n ( Ryl =~ Y £k
min = — X;)s Y
he# > ni=1 i)

e Question: Can we find the solution to this minimization? If so how fast!

* [he answer must depend on:
) n, the sample size
2) # ,the hypothesis class and loss function

3) &, the data distribution
4) the optimization algorithm that outputs our classifier



Computational Aspects of the ERM



FRM 1s erm... hard to solve

Theorem:

cmpirical risk minimization 1s NP-hard in general



FRM 1s erm... hard to solve

Theorem:

cmpirical risk minimization 1s NP-hard in general

Proof:
* Re-write any hard problem as a minimization of a sum of n functions.
e For example, £(w; A, ) = — A, (1 — W, w) and w € {1} anc

min Z —A; (I —ww))

we {1V |E| (i eE

* This is the MaxCut problem, which i1s NP-hard.




What about learning NINs?

Theorem: [Judd 88, Sima 94]

For a fixed architecture 1t 1s NP-complete to decide If there exists a set of welghts that can
memorize a data set.
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What about learning NINs?

Theorem: [Judd 88, Sima 94]

For a fixed architecture 1t 1s NP-complete to decide If there exists a set of welghts that can
memorize a data set.

Theorem: [Manurangsi & Reichman 201 8]

~ven for the case of a single RelLU activation, finding a set of weights that minimizes the squared
error (even approximately) for a given training set 1s NP- hard.

Theorem: [Goel et al. 2020]

Even In the “realizable™ case (1.e., where a planted ground truth exists) learning depth-2 RelLUs s
hard.
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Theorem:
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VWhat about learning NINs of arbitrary
Size!

Theorem:

Let S = { (X1, V1), ..., (x,,¥.)} such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

Clearly possible to memorize any number of data points It network
scales with the size of It.
=> Memomzmg vv|th scalmg memory size = easy

Minimum number of vve|ghts / activations needed to memorize!

O(n) and O (ﬁ)

Xi d o({x,w) — b; — €)




—HMmm... one second

Minimum number of weights / activations needed to memorize!?

O(n) and O (ﬁ)



—HMmm... one second

Minimum number of weights / activations needed to memorize!?

O(n) and O (ﬁ)

Jaking Into account parameter count bounds, this means that
uniform type of generalization bounds are doomed




OK so, what can we do?
| et's revisit nice loss functions
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First stop: Convexity

e “A function that looks like a bowl!”

Def.:

A function f(w) is convex on ' if

fla-w+ (1 =a) -w) < afiw) + (1 —a)f(w)

« (Convexity makes our lives much easier (more on next lecture).
* Most useful property (for us)

(VAW w' = w) 2 fw') = fow®)

oradient Is always positively correlated with the right direction towards OPT

Let's get a bit more mileage from this
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*Observe: |-st orderTaylor always has a linear form, e.g., f(w) =~ (w,a) + b

Q: what happens forwy s.1. Vf(wy) =0




First stop: Convexity

Q: what happens forw, s.t. Vf(wy) =07
We have f(w) 2 flwy) + ( Vf(wp), w — wy) = f(w) = f(w)



First stop: Convexity

Q: what happens forw, s.t. Vf(wy) =07
We have f(w) 2 flwy) + ( Vf(wp), w — wy) = f(w) = f(w)

That s, all points wy s.¢. Vf(wy) = 0 are global minimizers.




First stop: Convexity

Q: what happens forw, s.t. Vf(wy) =07
We have f(w) 2 flwg) + (V). w — wy) = flw) 2 flwy)

* [hatis, all pointswy s.t. Vf(wy) = 0 are global minimizers.

Q: Using the above properties, can we use devise an algorithm for

min f(w), when the function is convex?
=Y/




First stop: Convexity

Q:what happens forwy s.t. Vf(wy) =07
We have filw) > flwy) + { VAwy), w — wy) = flw) > flw,)

* [hatis, all pointswy s.t. Vf(wy) = 0 are global minimizers.

Q: Using the above properties, can we use devise an algorithm for

min f(w), when the function is convex!
=Y/

Generally, one can approx. solve convex problems with complexity with the
ellipsoid method (very expensive/iteration)
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« Say we initialize at wy, then we could try to follow the “line” flwy) + (f(wy), w — wy)!
o  Q:But for how long! If we tried to just minimize the linear under-estimator, we'd go to -infty

Clue: Follow the target line, but take a small step!
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Addrtive updates

Xo
 Say we initialize at wy, then we could try to follow the “line” flw) + (f(wy), w — wy)!

» Let's make our algorithm to progress by additive steps, I.e,,
Wig1 = W T Uy

« Goall |Vfiw)ll =0

Clue: Minimize the linear approximation above, but not too much
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Local optimization

i
Xo
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et's make our algorithm to progress by additive steps, I.e,,

. 1
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WEW 2}/
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Wiy = arg min 4 flwg) + (Vfwe, w —wi) + ——|jw = well”

WEW

Think of w;, the best update, near w,

what I1s the OPT solution for the above quadratic problem!?
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Addrtive updates

Let's solve this, by setting grad to zero!

1

Vw{f(wk)+ (VI W, w— wy) +2—}/HW—W1¢”2} =0
|

= VW{(Vf(wk,w—wk) +2—}/Hw—wk|\2} = ()

> Vfw) + (v — w) = 0
4

= Wip1 = Wi — 7 VW)

Hal We just derived Gradient Descent!

How fast does GD converge! Next time!
Short answer, depends on the function!




VWrapping up

Minimizing training loss Is hard in general

RM Is hard for neural networks
RM is not hard If you are allowed to change architecture

Jowards reasonable algorithms, Step O0: Convexity

Step |: Gradient Descent



Next [ime:
Convergence rates of GD +
intro to SGD, the simplest learning algorithm
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