
ECE826 Lecture 6:

Computational aspects of ERM and Intro 
to Gradient-based Algorithms
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Some Definitions
• Our goal is to find a hypothesis (classifier)  with small expected risk

• The loss measures the disagreement between predictions and reality

• Since we can’t directly measure  (our true cost function), we can 
consider optimizing its sample-average proxy, i.e., the empirical risk
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Minimizing the Empirical Risk
• The gap of the true cost function from the one we have access to

• Question: Can we find the solution to this minimization? If so how fast?

• The answer must depend on:  
        1) , the sample size 
        2) , the hypothesis class and loss function 
        3) , the data distribution

           4) the optimization algorithm that outputs our classifier
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Computational Aspects of the ERM



ERM is erm… hard to solve

Theorem: 

Empirical risk minimization is NP-hard in general



 

Proof:  
• Re-write any hard problem as a minimization of a sum of  functions. 
• For example,  and  and

• This is the MaxCut problem, which is NP-hard.

n
ℓ(w; Ai,j) = − Ai,j(1 − wi ⋅ wj) w ∈ {±1}|V|
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What about learning NNs?

Theorem: [Judd 88, Sima 94]

For a fixed architecture it is NP-complete to decide if there exists a set of weights that can 
memorize a data set.
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What about learning NNs?

Theorem: [Judd 88, Sima 94]

For a fixed architecture it is NP-complete to decide if there exists a set of weights that can 
memorize a data set.

Theorem: [Goel et al. 2020]

Even in the “realizable” case (i.e., where a planted ground truth exists) learning depth-2 ReLUs is 
hard.

Theorem: [Manurangsi & Reichman 2018]

Even for the case of a single ReLU activation, finding a set of weights that minimizes the squared 
error (even approximately) for a given training set is NP- hard.
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Minimum number of weights / activations needed to memorize? 
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Hmm… one second
Minimum number of weights / activations needed to memorize? 
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Hmm… one second
Minimum number of weights / activations needed to memorize? 

 and O(n) O ( n)

Taking into account parameter count bounds, this means that 
uniform type of generalization bounds are doomed



OK so, what can we do?
Let’s revisit nice loss functions



• “A function that looks like a bowl”

First stop: Convexity

Def.:

A function  is convex on  if 
 

f(w) 𝒲
f(a ⋅ w + (1 − a) ⋅ w′ ) ≤ af(w) + (1 − a)f(w′ )



• “A function that looks like a bowl”

• Convexity makes our lives much easier (more on next lecture). 
• Most useful property (for us) 

gradient is always positively correlated with the right direction towards OPT

⟨∇f(w′ ), w′ − w*⟩ ≥ f(w′ ) − f(w*)

First stop: Convexity

Def.:

A function  is convex on  if 
 

f(w) 𝒲
f(a ⋅ w + (1 − a) ⋅ w′ ) ≤ af(w) + (1 − a)f(w′ )

Let’s get a bit more mileage from this
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• Q: what happens for  ?
• We have 

• That is, all points  are global minimizers.

w0 s . t . ∇f(w0) = 0
f(w) ≥ f(w0) + ⟨∇f(w0), w − w0⟩ ⇒ f(w) ≥ f(w0)

w0 s . t . ∇f(w0) = 0

First stop: Convexity

Q: Using the above properties, can we use devise an algorithm for
, when the function is convex?min

w∈𝒲
f(w)

Generally, one can approx. solve convex problems with complexity with the 
ellipsoid method (very expensive/iteration)
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• Say we initialize at , then we could try to follow the “line” !
• Q: But for how long? If we tried to just minimize the linear under-estimator, we’d go to -infty

w0 f(w0) + ⟨ f(w0), w − w0⟩

A simple idea

Clue: Follow the target line, but take a small step!
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• Say we initialize at , then we could try to follow the “line” !
• Let’s make our algorithm to progress by additive steps, i.e., 

 

• Goal? 

w0 f(w0) + ⟨ f(w0), w − w0⟩

wk+1 = wk + uk

∥∇f(w∞)∥ = 0

Additive updates

Clue: Minimize the linear approximation above, but not too much
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• Say we initialize at , then we could try to follow the “line” !
• Let’s make our algorithm to progress by additive steps, i.e., 

 

w0 f(w0) + ⟨ f(w0), w − w0⟩

wk+1 = arg min
w∈𝒲 {f(wk) + ⟨∇f(wk, w − wk⟩ +

1
2γ

∥w − wk∥2}

Local optimization

Think of  the best update, near wk+1 wk

what is the OPT solution for the above quadratic problem?
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• Let’s solve this, by setting grad to zero!

∇w{f(wk) + ⟨∇f(wk, w − wk⟩ +
1
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∥w − wk∥2} = 0

⇒ ∇w{⟨∇f(wk, w − wk⟩ +
1
2γ

∥w − wk∥2} = 0

⇒ ∇f(wk) +
1
γ

(w − wk) = 0

⇒ wk+1 = wk − γ∇f(wk)

Additive updates

Ha! We just derived Gradient Descent!

How fast does GD converge? Next time!
Short answer, depends on the function!



• Minimizing training loss is hard in general

• ERM is hard for neural networks
• ERM is not hard if you are allowed to change architecture

• Towards reasonable algorithms, Step 0: Convexity

• Step 1: Gradient Descent

Wrapping up



Next Time: 
Convergence rates of GD +

intro to SGD, the simplest learning algorithm
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