
ECE826 Lecture 6:

Computational aspects of ERM and Intro
to Gradient-based Algorithms

Contents

• From statistical bounds to optimization

• Computational aspects of the ERM

• What can we not do, computationally?

• What can we do? First stop: Convexity

• The proliferation of gradients

Some Definitions
• Our goal is to find a hypothesis (classifier) with small expected risk

• The loss measures the disagreement between predictions and reality

• Since we can’t directly measure (our true cost function), we can
consider optimizing its sample-average proxy, i.e., the empirical risk

hS

R[hS]

R[hS] = 𝔼(x,y)∼𝒟 [ℓ(hS(x); y)]

R̂[hS] =
1
n

n

∑
i=1

ℓ(hS(xi); yi)

Minimizing the Empirical Risk
• The gap of the true cost function from the one we have access to

• Question: Can we find the solution to this minimization? If so how fast?

• The answer must depend on:
 1) , the sample size
 2) , the hypothesis class and loss function
 3) , the data distribution

 4) the optimization algorithm that outputs our classifier

n
ℋ
𝒟

min
h∈ℋ (RS[h] =

1
n

n

∑
i=1

ℓ(h(xi); yi))

Computational Aspects of the ERM

ERM is erm… hard to solve

Theorem:

Empirical risk minimization is NP-hard in general

Proof:
• Re-write any hard problem as a minimization of a sum of functions.
• For example, and and

• This is the MaxCut problem, which is NP-hard.

n
ℓ(w; Ai,j) = − Ai,j(1 − wi ⋅ wj) w ∈ {±1}|V|

ERM is erm… hard to solve

Theorem:

Empirical risk minimization is NP-hard in general

min
w∈{±}|V|

1
|E | ∑

(i,j)∈E

− Ai,j(1 − wiwj)

What about learning NNs?

Theorem: [Judd 88, Sima 94]

For a fixed architecture it is NP-complete to decide if there exists a set of weights that can
memorize a data set.

What about learning NNs?

Theorem: [Judd 88, Sima 94]

For a fixed architecture it is NP-complete to decide if there exists a set of weights that can
memorize a data set.

Theorem: [Manurangsi & Reichman 2018]

Even for the case of a single ReLU activation, finding a set of weights that minimizes the squared
error (even approximately) for a given training set is NP- hard.

What about learning NNs?

Theorem: [Judd 88, Sima 94]

For a fixed architecture it is NP-complete to decide if there exists a set of weights that can
memorize a data set.

Theorem: [Goel et al. 2020]

Even in the “realizable” case (i.e., where a planted ground truth exists) learning depth-2 ReLUs is
hard.

Theorem: [Manurangsi & Reichman 2018]

Even for the case of a single ReLU activation, finding a set of weights that minimizes the squared
error (even approximately) for a given training set is NP- hard.

What about learning NNs of arbitrary
size?

What about learning NNs of arbitrary
size?

Theorem:

Let such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

S = {(x1, y1), …, (xn, yn)}

Proof: How can I memorize a single data point?

What about learning NNs of arbitrary
size?

Theorem:

Let such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

S = {(x1, y1), …, (xn, yn)}

Proof: How can I memorize a single data point?
• Let be a dimensional gaussian vector and . These s are unique, since .w d ⟨xi, w⟩ = bi bi xi ≠ xj

What about learning NNs of arbitrary
size?

Theorem:

Let such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

S = {(x1, y1), …, (xn, yn)}

Proof: How can I memorize a single data point?
• Let be a dimensional gaussian vector and . These s are unique, since .

• w.l.og. assume that
w d ⟨xi, w⟩ = bi bi xi ≠ xj

min
i,j;i≠j

|bi − bk | = 10ϵ

What about learning NNs of arbitrary
size?

Theorem:

Let such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

S = {(x1, y1), …, (xn, yn)}

Proof: How can I memorize a single data point?
• Let be a dimensional gaussian vector and . These s are unique, since .

• w.l.og. assume that

•Then here is a way to memorize a single label

w d ⟨xi, w⟩ = bi bi xi ≠ xj
min
i,j;i≠j

|bi − bk | = 10ϵ

What about learning NNs of arbitrary
size?

Theorem:

Let such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

S = {(x1, y1), …, (xn, yn)}

Proof: How can I memorize a single data point?
• Let be a dimensional gaussian vector and . These s are unique, since .

• w.l.og. assume that

•Then here is a way to memorize a single label

w d ⟨xi, w⟩ = bi bi xi ≠ xj
min
i,j;i≠j

|bi − bk | = 10ϵ

What about learning NNs of arbitrary
size?

Theorem:

Let such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

S = {(x1, y1), …, (xn, yn)}

xi,1

xi,2

xi,d

σ(⟨x, w⟩ − b1 + ϵ)

σ(⟨x, w⟩ − b1 − ϵ)

1

−1

Proof: How can I memorize a single data point?
• Let be a dimensional gaussian vector and . These s are unique, since .

• w.l.og. assume that

•Then here is a way to memorize a single label
• You can memorize 1 data point with 2 activations

w d ⟨xi, w⟩ = bi bi xi ≠ xj
min
i,j;i≠j

|bi − bk | = 10ϵ

What about learning NNs of arbitrary
size?

Theorem:

Let such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

S = {(x1, y1), …, (xn, yn)}

xi,1

xi,2

xi,d

σ(⟨x, w⟩ − b1 + ϵ)

σ(⟨x, w⟩ − b1 − ϵ)

1

−1

Proof: How can I memorize a single data point?
• Let be a dimensional gaussian vector and . These s are unique, since .

• w.l.og. assume that

•Then here is a way to memorize a single label
• You can memorize 1 data point with 2 activations
•You can memorize with activations
and parameters

w d ⟨xi, w⟩ = bi bi xi ≠ xj
min
i,j;i≠j

|bi − bk | = 10ϵ

n 2n
O(nd)

What about learning NNs of arbitrary
size?

Theorem:

Let such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

S = {(x1, y1), …, (xn, yn)}

xi,1

xi,2

xi,d

σ(⟨x, w⟩ − b1 + ϵ)

σ(⟨x, w⟩ − b1 − ϵ)

1

−1

Proof: How can I memorize a single data point?
• Let be a dimensional gaussian vector and . These s are unique, since .

• w.l.og. assume that

•Then here is a way to memorize a single label
• You can memorize 1 data point with 2 activations
•You can memorize with activations
and parameters

w d ⟨xi, w⟩ = bi bi xi ≠ xj
min
i,j;i≠j

|bi − bk | = 10ϵ

n 2n
O(nd)

What about learning NNs of arbitrary
size?

Theorem:

Let such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

S = {(x1, y1), …, (xn, yn)}

xi,1

xi,2

xi,d

σ(⟨x, w⟩ − b1 + ϵ)

σ(⟨x, w⟩ − b1 − ϵ)

1

−1

Clearly possible to memorize any number of data points if network
scales with the size of it.
=> Memorizing with scaling memory size = easy

Proof: How can I memorize a single data point?
• Let be a dimensional gaussian vector and . These s are unique, since .

• w.l.og. assume that

•Then here is a way to memorize a single label
• You can memorize 1 data point with 2 activations
•You can memorize with activations
and parameters

w d ⟨xi, w⟩ = bi bi xi ≠ xj
min
i,j;i≠j

|bi − bk | = 10ϵ

n 2n
O(nd)

What about learning NNs of arbitrary
size?

Theorem:

Let such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

S = {(x1, y1), …, (xn, yn)}

xi,1

xi,2

xi,d

σ(⟨x, w⟩ − b1 + ϵ)

σ(⟨x, w⟩ − b1 − ϵ)

1

−1

Clearly possible to memorize any number of data points if network
scales with the size of it.
=> Memorizing with scaling memory size = easy

Minimum number of weights / activations needed to memorize?
 and O(n) O (n)

Hmm… one second
Minimum number of weights / activations needed to memorize?

 and O(n) O (n)

Hmm… one second
Minimum number of weights / activations needed to memorize?

 and O(n) O (n)

Taking into account parameter count bounds, this means that
uniform type of generalization bounds are doomed

OK so, what can we do?
Let’s revisit nice loss functions

• “A function that looks like a bowl”

First stop: Convexity

Def.:

A function is convex on if

f(w) 𝒲
f(a ⋅ w + (1 − a) ⋅ w′) ≤ af(w) + (1 − a)f(w′)

• “A function that looks like a bowl”

• Convexity makes our lives much easier (more on next lecture).
• Most useful property (for us)

gradient is always positively correlated with the right direction towards OPT

⟨∇f(w′), w′ − w*⟩ ≥ f(w′) − f(w*)

First stop: Convexity

Def.:

A function is convex on if

f(w) 𝒲
f(a ⋅ w + (1 − a) ⋅ w′) ≤ af(w) + (1 − a)f(w′)

Let’s get a bit more mileage from this

• The first order Taylor expansion of a convex function is a “global under-estimate”
•

•

∀w, w0 ∈ ℝd, f(w) ≥ f(w0) + ⟨∇f(w0), w − w0⟩

First stop: Convexity

• The first order Taylor expansion of a convex function is a “global under-estimate”
•

•

∀w, w0 ∈ ℝd, f(w) ≥ f(w0) + ⟨∇f(w0), w − w0⟩

First stop: Convexity

• The first order Taylor expansion of a convex function is a “global under-estimate”
•

•Observe: 1-st order Taylor always has a linear form, e.g. ,

∀w, w0 ∈ ℝd, f(w) ≥ f(w0) + ⟨∇f(w0), w − w0⟩

f(w) ≈ ⟨w, a⟩ + b

First stop: Convexity

• The first order Taylor expansion of a convex function is a “global under-estimate”
•

•Observe: 1-st order Taylor always has a linear form, e.g. ,

∀w, w0 ∈ ℝd, f(w) ≥ f(w0) + ⟨∇f(w0), w − w0⟩

f(w) ≈ ⟨w, a⟩ + b

First stop: Convexity

Q: what happens for ?w0 s . t . ∇f(w0) = 0

• Q: what happens for ?
• We have

w0 s . t . ∇f(w0) = 0
f(w) ≥ f(w0) + ⟨∇f(w0), w − w0⟩ ⇒ f(w) ≥ f(w0)

First stop: Convexity

• Q: what happens for ?
• We have

• That is, all points are global minimizers.

w0 s . t . ∇f(w0) = 0
f(w) ≥ f(w0) + ⟨∇f(w0), w − w0⟩ ⇒ f(w) ≥ f(w0)

w0 s . t . ∇f(w0) = 0

First stop: Convexity

• Q: what happens for ?
• We have

• That is, all points are global minimizers.

w0 s . t . ∇f(w0) = 0
f(w) ≥ f(w0) + ⟨∇f(w0), w − w0⟩ ⇒ f(w) ≥ f(w0)

w0 s . t . ∇f(w0) = 0

First stop: Convexity

Q: Using the above properties, can we use devise an algorithm for
, when the function is convex?min

w∈𝒲
f(w)

• Q: what happens for ?
• We have

• That is, all points are global minimizers.

w0 s . t . ∇f(w0) = 0
f(w) ≥ f(w0) + ⟨∇f(w0), w − w0⟩ ⇒ f(w) ≥ f(w0)

w0 s . t . ∇f(w0) = 0

First stop: Convexity

Q: Using the above properties, can we use devise an algorithm for
, when the function is convex?min

w∈𝒲
f(w)

Generally, one can approx. solve convex problems with complexity with the
ellipsoid method (very expensive/iteration)

A simple idea

• Say we initialize at , then we could try to follow the “line” !w0 f(w0) + ⟨ f(w0), w − w0⟩

A simple idea

• Say we initialize at , then we could try to follow the “line” !
• Q: But for how long? If we tried to just minimize the linear under-estimator, we’d go to -infty

w0 f(w0) + ⟨ f(w0), w − w0⟩

A simple idea

• Say we initialize at , then we could try to follow the “line” !
• Q: But for how long? If we tried to just minimize the linear under-estimator, we’d go to -infty

w0 f(w0) + ⟨ f(w0), w − w0⟩

A simple idea

Clue: Follow the target line, but take a small step!

• Say we initialize at , then we could try to follow the “line” !w0 f(w0) + ⟨ f(w0), w − w0⟩

Additive updates

• Say we initialize at , then we could try to follow the “line” !
• Let’s make our algorithm to progress by additive steps, i.e.,

w0 f(w0) + ⟨ f(w0), w − w0⟩

wk+1 = wk + uk

Additive updates

• Say we initialize at , then we could try to follow the “line” !
• Let’s make our algorithm to progress by additive steps, i.e.,

• Goal?

w0 f(w0) + ⟨ f(w0), w − w0⟩

wk+1 = wk + uk

∥∇f(w∞)∥ = 0

Additive updates

• Say we initialize at , then we could try to follow the “line” !
• Let’s make our algorithm to progress by additive steps, i.e.,

• Goal?

w0 f(w0) + ⟨ f(w0), w − w0⟩

wk+1 = wk + uk

∥∇f(w∞)∥ = 0

Additive updates

Clue: Minimize the linear approximation above, but not too much

• Say we initialize at , then we could try to follow the “line” !w0 f(w0) + ⟨ f(w0), w − w0⟩

Local optimization

• Say we initialize at , then we could try to follow the “line” !
• Let’s make our algorithm to progress by additive steps, i.e.,

w0 f(w0) + ⟨ f(w0), w − w0⟩

wk+1 = arg min
w∈𝒲 {f(wk) + ⟨∇f(wk, w − wk⟩ +

1
2γ

∥w − wk∥2}

Local optimization

• Say we initialize at , then we could try to follow the “line” !
• Let’s make our algorithm to progress by additive steps, i.e.,

w0 f(w0) + ⟨ f(w0), w − w0⟩

wk+1 = arg min
w∈𝒲 {f(wk) + ⟨∇f(wk, w − wk⟩ +

1
2γ

∥w − wk∥2}

Local optimization

Think of the best update, near wk+1 wk

• Say we initialize at , then we could try to follow the “line” !
• Let’s make our algorithm to progress by additive steps, i.e.,

w0 f(w0) + ⟨ f(w0), w − w0⟩

wk+1 = arg min
w∈𝒲 {f(wk) + ⟨∇f(wk, w − wk⟩ +

1
2γ

∥w − wk∥2}

Local optimization

Think of the best update, near wk+1 wk

what is the OPT solution for the above quadratic problem?

• Let’s solve this, by setting grad to zero!

Additive updates

• Let’s solve this, by setting grad to zero!

∇w{f(wk) + ⟨∇f(wk, w − wk⟩ +
1
2γ

∥w − wk∥2} = 0

⇒ ∇w{⟨∇f(wk, w − wk⟩ +
1
2γ

∥w − wk∥2} = 0

⇒ ∇f(wk) +
1
γ

(w − wk) = 0

⇒ wk+1 = wk − γ∇f(wk)

Additive updates

• Let’s solve this, by setting grad to zero!

∇w{f(wk) + ⟨∇f(wk, w − wk⟩ +
1
2γ

∥w − wk∥2} = 0

⇒ ∇w{⟨∇f(wk, w − wk⟩ +
1
2γ

∥w − wk∥2} = 0

⇒ ∇f(wk) +
1
γ

(w − wk) = 0

⇒ wk+1 = wk − γ∇f(wk)

Additive updates

Ha! We just derived Gradient Descent!

• Let’s solve this, by setting grad to zero!

∇w{f(wk) + ⟨∇f(wk, w − wk⟩ +
1
2γ

∥w − wk∥2} = 0

⇒ ∇w{⟨∇f(wk, w − wk⟩ +
1
2γ

∥w − wk∥2} = 0

⇒ ∇f(wk) +
1
γ

(w − wk) = 0

⇒ wk+1 = wk − γ∇f(wk)

Additive updates

Ha! We just derived Gradient Descent!

How fast does GD converge? Next time!
Short answer, depends on the function!

• Minimizing training loss is hard in general

• ERM is hard for neural networks
• ERM is not hard if you are allowed to change architecture

• Towards reasonable algorithms, Step 0: Convexity

• Step 1: Gradient Descent

Wrapping up

Next Time:
Convergence rates of GD +

intro to SGD, the simplest learning algorithm

Bubeck, S., 2015. Convex Optimization: Algorithms and Complexity. Foundations and Trends® in Machine Learning, 8(3-4), pp.231-357.
https://arxiv.org/pdf/1405.4980.pdf

Judd, S., 1988. On the complexity of loading shallow neural networks. Journal of Complexity, 4(3), pp.177-192.
https://tinyurl.com/44snxxn6

Šíma, J., 1994. Loading deep networks is hard. Neural Computation, 6(5), pp.842-850.
Vancouver
https://direct.mit.edu/neco/article/6/5/842/5816/Loading-Deep-Networks-Is-Hard

Goel, S., Klivans, A., Manurangsi, P. and Reichman, D., 2020. Tight hardness results for training depth-2 ReLU networks. arXiv preprint arXiv:2011.13550.
https://arxiv.org/pdf/2011.13550.pdf

Manurangsi, P. and Reichman, D., 2018. The computational complexity of training relu (s). arXiv preprint arXiv:1810.04207.
https://arxiv.org/pdf/1810.04207.pdf

Baum, E.B., 1988. On the capabilities of multilayer perceptrons. Journal of complexity, 4(3), pp.193-215. Vancouver
https://tinyurl.com/yckawxha

Rajput, S., Sreenivasan, K., Papailiopoulos, D. and Karbasi, A., 2021. An exponential improvement on the memorization capacity of deep threshold networks.
Advances in Neural Information Processing Systems, 34.
https://proceedings.neurips.cc/paper/2021/file/69dd2eff9b6a421d5ce262b093bdab23-Paper.pdf

reading list

