FCE826 Lecture 6:

Computational aspects of ERM and Intro
to Gradient-based Algorithms

Contents

* From statistical bounds to optimization

e Computational aspects of the ERM

* VWhat can we not do, computationally?
* What can we do! First stop: Convexity

* [he proliferation of gradients

Some Definrtions

e Our goal is to find a hypothesis (classifier) h¢ with small expected risk
R[hS] — [E(x,y)NQZ [f(hS(x)ay)]

* [he loss measures the disagreement between predictions and reality

e Since we can't directly measure R|[hq| (our true cost function), we can
consider optimizing Its sample-average proxy, 1.e., the empirical risk

R | <
R [hs] — ; lzzl £ (hs(xi)a yi)

Minimizing the Empirical Risk

* [he gap of the true cost function from the one we have access to

n (Ryl =~ Y £k
min = — X;)s Y
he# > ni=1 i)

e Question: Can we find the solution to this minimization? If so how fast!

* [he answer must depend on:
) n, the sample size
2) # ,the hypothesis class and loss function

3) &, the data distribution
4) the optimization algorithm that outputs our classifier

Computational Aspects of the ERM

FRM 1s erm... hard to solve

Theorem:

cmpirical risk minimization 1s NP-hard in general

FRM 1s erm... hard to solve

Theorem:

cmpirical risk minimization 1s NP-hard in general

Proof:
* Re-write any hard problem as a minimization of a sum of n functions.
e For example, £(w; A,) = — A, (1 — W, w) and w € {1} anc

min Z —A; (I —ww))

we {1V |E| (i eE

* This is the MaxCut problem, which i1s NP-hard.

What about learning NINs?

Theorem: [Judd 88, Sima 94]

For a fixed architecture 1t 1s NP-complete to decide If there exists a set of welghts that can
memorize a data set.

What about learning NINs?

Theorem: [Judd 88, Sima 94]

For a fixed architecture it 1s NP-com

memorize a data set.

Theorem: [Manurangsi & Reichman 201 8]

~ven for the case of a single Re
error (even ap

U activation, fi

broximately) fo

nding a set of weights that nr

~a given training set 1s NP-

blete to decide It there exists a set of welghts that can

inimizes the squared
ard.

What about learning NINs?

Theorem: [Judd 88, Sima 94]

For a fixed architecture 1t 1s NP-complete to decide If there exists a set of welghts that can
memorize a data set.

Theorem: [Manurangsi & Reichman 201 8]

~ven for the case of a single RelLU activation, finding a set of weights that minimizes the squared
error (even approximately) for a given training set 1s NP- hard.

Theorem: [Goel et al. 2020]

Even In the “realizable™ case (1.e., where a planted ground truth exists) learning depth-2 RelLUs s
hard.

What about learning NNs of arbrtrary
Size!

VWhat about learning NINs of arbitrary
Size!

Theorem:

Let S = { (X1, V1), ..., (x,,¥,) } such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

VWhat about learning NINs of arbitrary
Size!

Theorem:

Let S = { (X1, V1), ..., (x,,¥,) } such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

Proof: How can | memorize a single data point?

VWhat about learning NINs of arbitrary

Theorem:

s|ze!

Let S = { (X1, V1), ..., (x,,¥,) } such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

Proof:

e Letw

ow can | memorize a single data point!

e a d dimensional gaussian vec

or and (x;, w) = b, These b;s are unique, since x; # X;

VWhat about learning NINs of arbitrary
Size!

Theorem:

Let S = { (X1, V1), ..., (x,,¥,) } such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

Proof: How can | memorize a single data point?
» Let w be a d dimensional gaussian vector and (x;, w) = b;. These b;s are unique, since x; # X

. W.log.assume that min | b, — b, | = 10e
WRES

VWhat about learning NINs of arbitrary

Theorem:

s|ze!

Let S = { (X1, V1), ..., (x,,¥,) } such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

Proof:

e Letw

ow can | memorize a single data point!

e a d dimensional gaussian vec

or and (x;, w) = b, These b;s are unique, since x; # X;

. W.l.og assume that min |b; — b, | = 10¢

NRES

* [hen here Is a way to memorize a single label

What about learning NNs of arbrtrary

Theorem:

s|ze!

Let S = { (X1, V1), ..., (x,,¥,) } such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

Proof:

e Letw

ow can | memorize a single data point!

e a d dimensional gaussian vec

or and (x;, w) = b, These b;s are unique, since x; # X;

. W.log.assume that min | b, — b, | = 10e

* [hen here Is a way to memorize a single label

NRES]

Ai1

Aio

Aid

o({x,w) — b; + ¢€)

1

—1

o({x,w) — b; — €)

What about learning NNs of arbrtrary
Size!

Theorem:

Let S = { (X1, V1), ..., (x,,¥,) } such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

Proof: How can | memorize a single data point?
» Let w be a d dimensional gaussian vector and (x;, w) = b;. These b;s are unique, since x; # X

. W.log.assume that min | b, — b, | = 10e
LJ 37

o({x,w) — b; + ¢€)
1

* [hen here I1s a way to memorize a single labe
* You can memorize | data point with 2 activations

Ai1

Aio

—1

Xid o({x,w) — b, —€)

What about learning NNs of arbrtrary

Theorem:

s|ze!

Let S = { (X1, V1), ..., (x,,¥,) } such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

Proof: How can | memorize a single data point?

» Let w be a d dimensional gaussian vec

. W.log.assume that min | b, — b, | = 10e
LJ 37

* [hen here Is a way to

and O(nd) parameters

memorize a single labe
* You can memorize | data pol

*YOU can memorize n with 2n activations

Nt with 2 activa

1ONS

Ai1

Aio

Aid

or and (x;, w) = b, These b;s are unique, since x; # X;

o({x,w) — b; + ¢€)

1

—1

o({x,w) — b; — €)

What about learning NNs of arbrtrary
Size!

Theorem:

Let S = { (X1, V1), ..., (x,,¥,) } such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

Clearly possible to memorize any number of data points It network

scales with the size of It.
=> Memorizing with scaling memory size = easy

* [hen here I1s a way to memorize a single labe
* You can memorize | data point with 2 activations
*YOou can memorize n with 2n activations Xi2

and O(nd) parameters

Ai1

Xid o({x,w) — b, —€)

VWhat about learning NINs of arbitrary
Size!

Theorem:

Let S = { (X1, V1), ..., (x,,¥.)} such that no two data points are identical in feature space. Then, we
can always create a threshold neural network that fits the data set.

Clearly possible to memorize any number of data points It network
scales with the size of It.
=> Memomzmg vv|th scalmg memory size = easy

Minimum number of vve|ghts / activations needed to memorize!

O(n) and O (ﬁ)

Xi d o({x,w) — b; — €)

—HMmm... one second

Minimum number of weights / activations needed to memorize!?

O(n) and O (ﬁ)

—HMmm... one second

Minimum number of weights / activations needed to memorize!?

O(n) and O (ﬁ)

Jaking Into account parameter count bounds, this means that
uniform type of generalization bounds are doomed

OK so, what can we do?
| et's revisit nice loss functions

First stop: Convexity

“A function that looks like a bowl!”

Def.:

A function f(w) is convex on ' if

fla-w+ (1 =a) -w) < afiw) + (1 —a)f(w)

First stop: Convexity

e “A function that looks like a bowl!”

Def.:

A function f(w) is convex on ' if

fla-w+ (1 =a) -w) < afiw) + (1 —a)f(w)

« (Convexity makes our lives much easier (more on next lecture).
* Most useful property (for us)

(VAW w' = w) 2 fw') = fow®)

oradient Is always positively correlated with the right direction towards OPT

Let's get a bit more mileage from this

First stop: Convexity

The first order lTaylor expansion of a convex function is a “‘global under-estimate”

Vw,w, € | ‘ Jw) > fwy) + (Vwg), w — wp)

First stop: Convexity

The first order lTaylor expansion of a convex function is a “‘global under-estimate”

* Vw,wy €l ‘ Jw) = flwy) + (Vf(wg), w — wy)

First stop: Convexity

* [he first order laylor expansion of a convex function is a “‘global under-estimate”

* Vw,wy €l ‘ Jw) = flwy) + (Vf(wg), w — wy)

: :"
! :
()
Xg_ Y3

_.%(x\\ +<’QQ (X J)x' Ke)

*Observe: |-st orderTaylor always has a linear form, e.g., f(w) =~ (w,a) + b

First stop: Convexity

* [he first order laylor expansion of a convex function is a “‘global under-estimate”

* Vw,wy €l ‘ Jw) = flwy) + (Vf(wg), w — wy)

: s'
| :
()
Xg_ Y3

&Y(x\\ *’<’<]~? (X «3) x~ K4)

*Observe: |-st orderTaylor always has a linear form, e.g., f(w) =~ (w,a) + b

Q: what happens forwy s.1. Vf(wy) =0

First stop: Convexity

Q: what happens forw, s.t. Vf(wy) =07
We have f(w) 2 flwy) + (Vf(wp), w — wy) = f(w) = f(w)

First stop: Convexity

Q: what happens forw, s.t. Vf(wy) =07
We have f(w) 2 flwy) + (Vf(wp), w — wy) = f(w) = f(w)

That s, all points wy s.¢. Vf(wy) = 0 are global minimizers.

First stop: Convexity

Q: what happens forw, s.t. Vf(wy) =07
We have f(w) 2 flwg) + (V). w — wy) = flw) 2 flwy)

* [hatis, all pointswy s.t. Vf(wy) = 0 are global minimizers.

Q: Using the above properties, can we use devise an algorithm for

min f(w), when the function is convex?
=Y/

First stop: Convexity

Q:what happens forwy s.t. Vf(wy) =07
We have filw) > flwy) + { VAwy), w — wy) = flw) > flw,)

* [hatis, all pointswy s.t. Vf(wy) = 0 are global minimizers.

Q: Using the above properties, can we use devise an algorithm for

min f(w), when the function is convex!
=Y/

Generally, one can approx. solve convex problems with complexity with the
ellipsoid method (very expensive/iteration)

A simple idea

A simple idea

Say we initialize at wy, then we could try to follow the “line” f(wy) + (f(wy), w — wp)!

A simple idea

(
\
|
(

Xo

« Say we initialize at wy, then we could try to follow the “line” flwy) + (f(wy), w — wy)!
o Q:But for how long! If we tried to just minimize the linear under-estimator, we'd go to -infty

A simple idea

(
\
|
(

Xo

« Say we initialize at wy, then we could try to follow the “line” flwy) + (f(wy), w — wy)!
o Q:But for how long! If we tried to just minimize the linear under-estimator, we'd go to -infty

Clue: Follow the target line, but take a small step!

Addrtive updates

Say we initialize at wy, then we could try to follow the “line” f(wy) + (f(wy), w — wp)!

Addrtive updates

(
\
|
(

Xo

 Say we initialize at wy, then we could try to follow the “line” flw) + (f(wy), w — wy)!
o Let's make our algorithm to progress by additive steps, I.e,
Wigl = Wi T Uy

Addrtive updates

(
\
|
(

Xo

 Say we initialize at wy, then we could try to follow the “line” flw) + (f(wy), w — wy)!
o Let's make our algorithm to progress by additive steps, I.e,
Wigl = Wi T Uy

« Goall |Vfiw)ll =0

Addrtive updates

Xo
 Say we initialize at wy, then we could try to follow the “line” flw) + (f(wy), w — wy)!

» Let's make our algorithm to progress by additive steps, I.e,,
Wig1 = W T Uy

« Goall |Vfiw)ll =0

Clue: Minimize the linear approximation above, but not too much

Local optimization

Say we initialize at wy, then we could try to follow the “line” f(wy) + (f(wy), w — wy)!

Local optimization

i
Xo
Say we initialize at w, then we could try to follow the “line” flwy) + (f(wy), w — wy)'
et's make our algorithm to progress by additive steps, I.e,,

. 1
Wi = alg 111 {f(Wk) + <Vf(wk9 W — Wk> + —||lw — WkHZ}
WEW 2}/

Say we |
et's ma

nitialize at wy, the

Local optimization

N we could -

|

(

|
Xo

ry 10 -

ollow the “line” flwy) + (f(wy), w — wy)'

<e our algorithm -

'O progress

DY adC

tive steps, I.e.,

Wi, = arg min 4 f(w,) + (VW w—wy) + Z_HW — WkHZ

WEW

Think of w,_ | the best update, near w;,

Say we |
et's ma

nitialize at wy, the

Local optimization

N we could -

(

\

|

(

|
Xo

ry 10 -

ollow the “line” flwy) + (f(wy), w — wy)'

<e our algorithm -

[0 progress

Oy adc

tive steps, I.e.,

Wiy = arg min 4 flwg) + (Vfwe, w —wi) + ——|jw = well”

WEW

Think of w;, the best update, near w,

what I1s the OPT solution for the above quadratic problem!?

Addrtive updates

Let's solve this, by setting grad to zero!

Addrtive updates

Let's solve this, by setting grad to zero!

|

V., {f(wk) + (Vfw,w—w,) + 2_;/HW _ WkHZ} — ()
|

= VW{(Vf(wk,w — Wy) +2—wa — wkHZ} = ()

= Vf(w,) + l(W —w,) =0
Y

= Wip1 = Wi — ¥ VW)

Addrtive updates

Let's solve this, by setting grad to zero!

|

V., {f(wk) + (Vfw,w —w,) + 2_;/HW _ Wkuz} — ()
|

= VW{(Vf(wk,w — Wy) +2—}/HW — wkﬂz} = ()

> Vfw) + (v — w) = 0
4

= Wip1 = Wi — ¥ VW)

Hal We just derived Gradient Descent!

Addrtive updates

Let's solve this, by setting grad to zero!

1

Vw{f(wk)+ (VI W, w— wy) +2—}/HW—W1¢”2} =0
|

= VW{(Vf(wk,w—wk) +2—}/Hw—wk|\2} = ()

> Vfw) + (v — w) = 0
4

= Wip1 = Wi — 7 VW)

Hal We just derived Gradient Descent!

How fast does GD converge! Next time!
Short answer, depends on the function!

VWrapping up

Minimizing training loss Is hard in general

RM Is hard for neural networks
RM is not hard If you are allowed to change architecture

Jowards reasonable algorithms, Step O0: Convexity

Step |: Gradient Descent

Next [ime:
Convergence rates of GD +
intro to SGD, the simplest learning algorithm

reading list

Bubeck, S., 2015. Convex Optimization: Algorithms and Complexity. Foundations and Trends® in Machine Learning, 8(3-4), pp.23 1-357.
https://arxiv.org/pdf/ 1 405.4980.pdf

Judd, 5., 1988. On the complexity of loading shallow neural networks. Journal of Complexity, 4(3), pp.|/77-192.
https://tinyurl.com/44snxxn6

Sima, J., 1994. Loading deep networks is hard. Neural Computation, 6(5), pp.842-850.
Vancouver

https://direct mit.edu/neco/article/6/5/842/58 | 6/L.oading-Deep-Networks-Is-Hard

Goel, S, Klivans, A., Manurangsi, P and Reichman, D., 2020. Tight hardness results for training depth-2 RelLU networks. arXiv preprint arXiv:201 .13550.
https://arxiv.org/pdf/201 1.13550.pdf

Manurangsi, P and Reichman, D., 201 8. The computational complexity of training relu (s). arXiv preprint arXiv: |1 810.04207.
https://arxiv.org/pdf/ | 810.04207.pdf

Baum, E.B., 1988. On the capabilities of multilayer perceptrons. Journal of complexity, 4(3), pp.193-215.Vancouver
https://tinyurl.com/yckawxha

Rajput, 5., Sreenivasan, K., Papailiopoulos, D. and Karbasi, A., 202 |. An exponential improvement on the memorization capacity of deep threshold networks.
Advances in Neural Information Processing Systems, 34.

https://proceedings.neurips.cc/paper/202 | /file/69dd2efi9b6a42 | d5ce262b09 3bdab2 3-Paper.pdf

