Computational aspects of ERM and Intro to Gradient-based Algorithms

FCF826 | ecture 6:

Contents

- From statistical bounds to optimization
- Computational aspects of the ERM
- What can we not do, computationally?
- What can we do? First stop: Convexity
- The proliferation of gradients

Some Definitions • Our goal is to find a hypothesis (classifier) $h_{\rm S}$ with small expected risk $R[h_S] = \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell(h_S(x); y) \right]$

• The loss measures the disagreement between predictions and reality

• Since we can't directly measure $R[h_S]$ (our true cost function), we can consider optimizing its sample-average proxy, i.e., the empirical risk

> $\hat{R}[h_S] = \frac{1}{2} \sum_{i=1}^{n} \ell(h_S(x_i); y_i)$ i=1

Minimizing the Empirical Risk • The gap of the true cost function from the one we have access to $\min_{h \in \mathcal{H}} \left(R_{S}[h] = \frac{1}{n} \sum_{i=1}^{n} \ell(h(x_{i}); y_{i}) \right)$

- The answer must depend on: 1) *n*, the sample size 2) \mathcal{H} , the hypothesis class and loss function 3) \mathcal{D} , the data distribution

• <u>Question</u>: Can we find the solution to this minimization? If so how fast?

4) the optimization algorithm that outputs our classifier

Computational Aspects of the ERM

Theorem:

ERM is erm... hard to solve

Empirical risk minimization is NP-hard in general

I heorem:

Proof:

- Re-write any hard problem as a minimization of a sum of *n* functions.
- For example, $\mathscr{C}(w; A_{i,j}) = -A_{i,j}(1 w_i \cdot w_j)$ and $w \in \{\pm 1\}^{|V|}$ and $\min_{w \in \{\pm\}^{|V|}} \frac{1}{|E|} \sum_{(i,j) \in E} -A_{i,j}(1 w_i w_j)$
- This is the MaxCut problem, which is NP-hard.

ERM is erm... hard to solve

Empirical risk minimization is NP-hard in general

What about learning NNs?

Theorem: [Judd 88, Sima 94]

For a fixed architecture it is NP-complete to decide if there exists a set of weights that can memorize a data set.

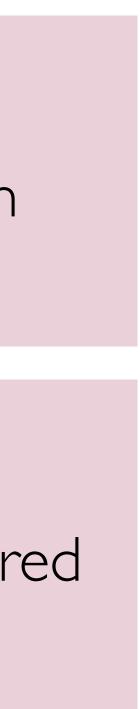
What about learning NNs?

Theorem: [Judd 88, Sima 94]

For a fixed architecture it is NP-complete to decide if there exists a set of weights that can memorize a data set.

Theorem: [Manurangsi & Reichman 2018]

Even for the case of a single ReLU activation, finding a set of weights that minimizes the squared error (even approximately) for a given training set is NP- hard.



What about learning NNs?

Theorem: [Judd 88, Sima 94]

For a fixed architecture it is NP-complete to decide if there exists a set of weights that can memorize a data set.

Theorem: [Manurangsi & Reichman 2018]

Even for the case of a single ReLU activation, finding a set of weights that minimizes the squared error (even approximately) for a given training set is NP- hard.

Theorem: [Goel et al. 2020]

Even in the ''realizable'' case (i.e., where a planted ground truth exists) learning depth-2 ReLUs is hard.

Theorem:

Theorem:

Proof: How can I memorize a single data point?

Theorem:

Proof: How can I memorize a single data point?

• Let w be a d dimensional gaussian vector and $\langle x_i, w \rangle = b_i$. These b_i s are unique, since $x_i \neq x_j$.

Theorem:

Proof: How can I memorize a single data point?

- Let w be a d dimensional gaussian vector and $\langle x_i, w \rangle = b_i$. These b_i s are unique, since $x_i \neq x_j$.
- w.l.og. assume that $\min |b_i b_k| = 10\epsilon$ *i*,*j*;*i*≠j

Theorem:

Proof: How can I memorize a single data point?

- Let w be a d dimensional gaussian vector and $\langle x_i, w \rangle = b_i$. These b_i s are unique, since $x_i \neq x_j$.
- w.l.og. assume that $\min |b_i b_k| = 10\epsilon$ $i,j;i\neq j$
- •Then here is a way to memorize a single label

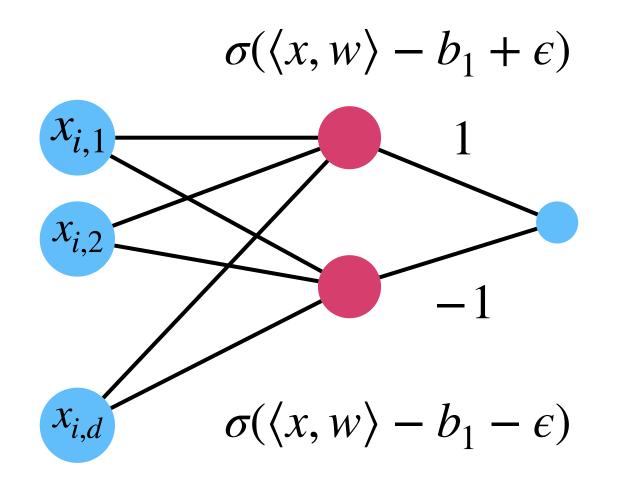
Theorem:

Proof: How can I memorize a single data point?

- w.l.og. assume that $\min |b_i b_k| = 10\epsilon$ $i, j; i \neq j$
- •Then here is a way to memorize a single label

Let $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ such that no two data points are identical in feature space. Then, we can always create a threshold neural network that fits the data set.

• Let w be a d dimensional gaussian vector and $\langle x_i, w \rangle = b_i$. These b_i s are unique, since $x_i \neq x_j$.



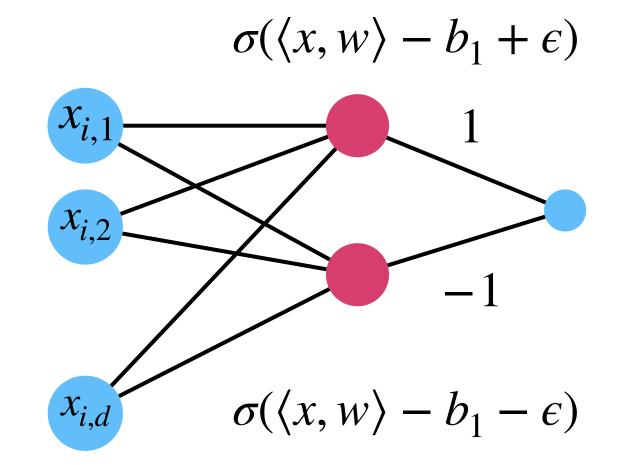
Theorem:

Proof: How can I memorize a single data point?

- w.l.og. assume that $\min |b_i b_k| = 10\epsilon$ $i,j;i\neq j$
- •Then here is a way to memorize a single label
- You can memorize I data point with 2 activations

Let $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ such that no two data points are identical in feature space. Then, we can always create a threshold neural network that fits the data set.

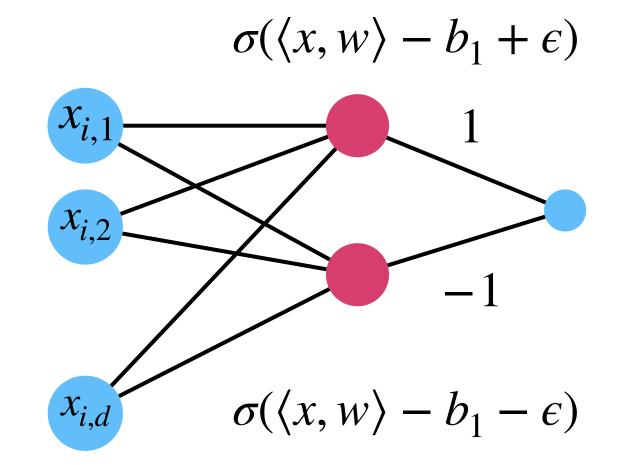
• Let w be a d dimensional gaussian vector and $\langle x_i, w \rangle = b_i$. These b_i s are unique, since $x_i \neq x_j$.



Theorem:

Proof: How can I memorize a single data point?

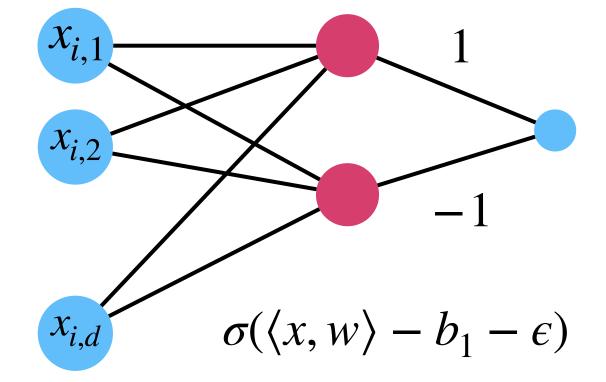
- Let w be a d dimensional gaussian vector and $\langle x_i, w \rangle = b_i$. These b_i s are unique, since $x_i \neq x_j$.
- w.l.og. assume that $\min |b_i b_k| = 10\epsilon$ $i,j;i\neq j$
- •Then here is a way to memorize a single label
- You can memorize I data point with 2 activations
- You can memorize n with 2n activations and O(nd) parameters

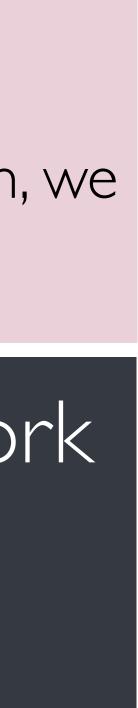


Theorem:

Clearly possible to memorize any number of data points if network scales with the size of it. 10ϵ => Memorizing with scaling memory size = easy

• Then here is a way to memorize a single label • You can memorize I data point with 2 activations • You can memorize n with 2n activations and O(nd) parameters





Theorem:

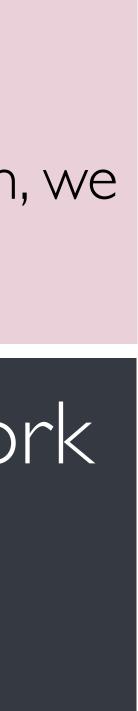
are is a way to momorize a single labo

Clearly possible to memorize any number of data points if network scales with the size of it. 10e=> Memorizing with scaling memory size = easy

Minimum number of weights / activations needed to memorize? activation O(n) and $O(\sqrt{n})$

Let $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ such that no two data points are identical in feature space. Then, we can always create a threshold neural network that fits the data set.

 $\sigma(\langle x, w \rangle - b_1 - \epsilon)$



Minimum number of weights / activations needed to memorize? O(n) and $O(\sqrt{n})$

Hmm... one second

Taking into account parameter count bounds, this means that uniform type of generalization bounds are doomed

Hmm... one second

Minimum number of weights / activations needed to memorize? O(n) and $O\left(\sqrt{n}\right)$

OK so, what can we do? Let's revisit nice loss functions

First stop: Convexity

• "A function that looks like a bowl"

Def.:

A function f(w) is convex on \mathcal{W} if $f(a \cdot w + (1 - a) \cdot w') \le af(w) + (1 - a)f(w')$

First stop: Convexity

"A function that looks like a bowl"

Def.:

A function f(w) is convex on \mathcal{W} if $f(a \cdot w + (1 - a) \cdot w)$

Convexity makes our lives much easier (more on next lecture). Most useful property (for us) $\langle \nabla f(w'), w' - w^* \rangle \ge f(w') - f(w^*)$

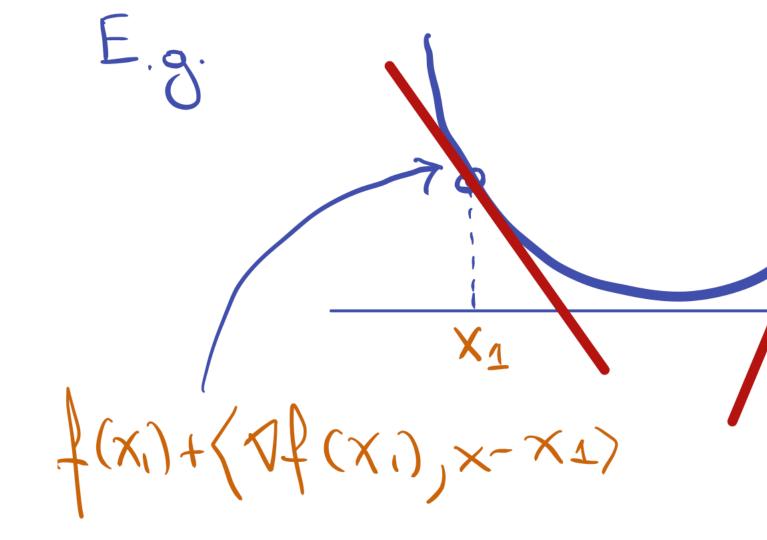
gradient is always positively correlated with the right direction towards OPT Let's get a bit more mileage from this

$$v') \le af(w) + (1 - a)f(w')$$

The first order Taylor expansion of a convex function is a "global under-estimate" • $\forall w, w_0 \in \mathbb{R}^d, \ f(w) \ge f(w_0) + \langle \nabla f(w_0), w - w_0 \rangle$ ullet

First stop: Convexity

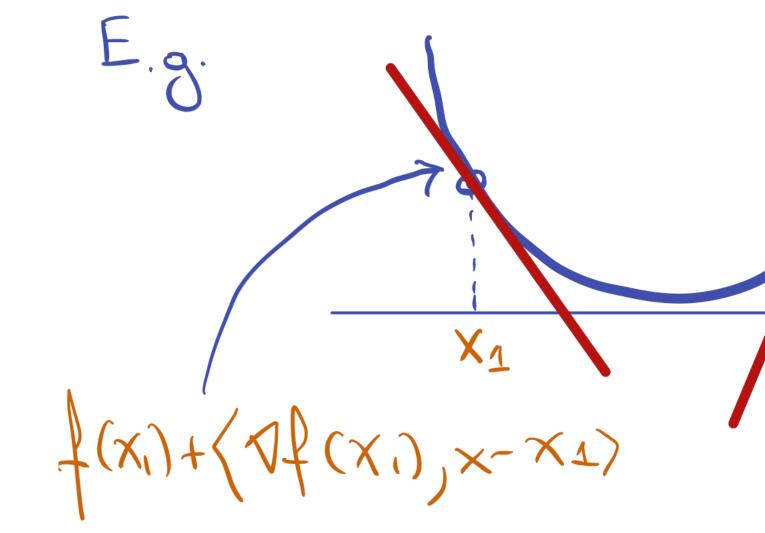
The first order Taylor expansion of a convex function is a "global under-estimate" $\forall w, w_0 \in \mathbb{R}^d, f(w) \ge f(w_0) + \langle \nabla f(w_0), w - w_0 \rangle$ ${ \bullet }$



First stop: Convexity

 $T = (\chi_2) + (T = (\chi_2) \chi - \chi_2)$ X2

The first order Taylor expansion of a convex function is a "global under-estimate" $\forall w, w_0 \in \mathbb{R}^d, f(w) \ge f(w_0) + \langle \nabla f(w_0), w - w_0 \rangle$

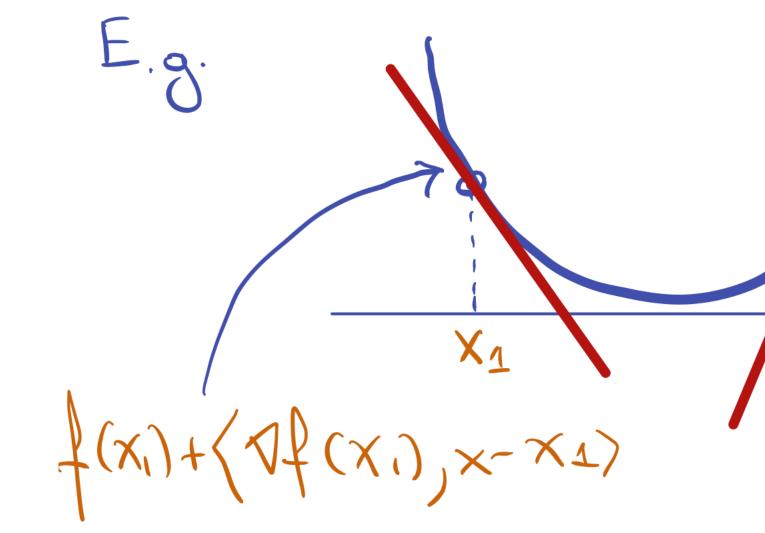


• Observe: I-st order Taylor always has a linear form, e.g., $f(w) \approx \langle w, a \rangle + b$

First stop: Convexity

 $T = (\chi_2) + (\nabla f(\chi_2) \times -\chi_2)$ X2

The first order Taylor expansion of a convex function is a "global under-estimate" $\forall w, w_0 \in \mathbb{R}^d, f(w) \ge f(w_0) + \langle \nabla f(w_0), w - w_0 \rangle$



• Observe: I-st order Taylor always has a linear form, e.g., $f(w) \approx \langle w, a \rangle + b$

Q: what happens for w_0 s.t. $\nabla f(w_0) = 0$?

First stop: Convexity

 $T = (\chi_2) + (\nabla f(\chi_2) \times -\chi_2)$ X2

Q: what happens for w_0 s.t. $\nabla f(w_0) = 0$? • We have $f(w) \ge f(w_0) + \langle \nabla f(w_0), w - w_0 \rangle \Rightarrow f(w) \ge f(w_0)$ •

First stop: Convexity

- Q: what happens for w_0 s.t. $\nabla f(w_0) = 0$? • We have $f(w) \ge f(w_0) + \langle \nabla f(w_0), w - w_0 \rangle \Rightarrow f(w) \ge f(w_0)$ lacksquare
- That is, all points w_0 s.t. $\nabla f(w_0) = 0$ are global minimizers.

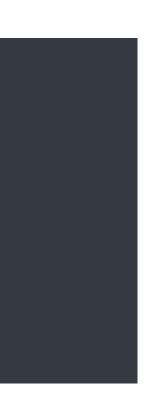
First stop: Convexity

- Q: what happens for w_0 s.t. $\nabla f(w_0) = 0$? We have $f(w) \ge f(w_0) + \langle \nabla f(w_0), w - w_0 \rangle \Rightarrow f(w) \ge f(w_0)$ \bullet
- That is, all points w_0 s.t. $\nabla f(w_0) = 0$ are global minimizers.

 $w \in \mathcal{W}$

First stop: Convexity

Q: Using the above properties, can we use devise an algorithm for $\min f(w)$, when the function is convex?



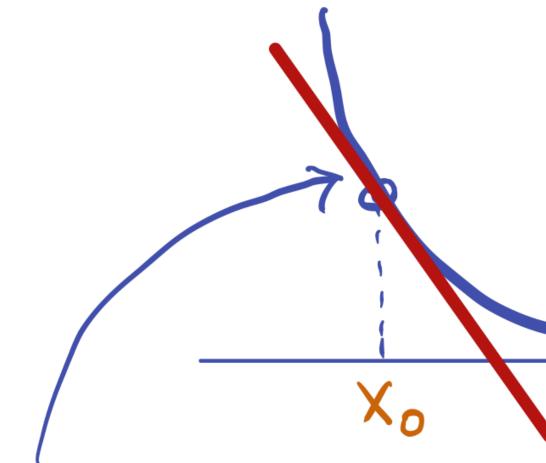
- Q: what happens for w_0 s.t. $\nabla f(w_0) = 0$? We have $f(w) \ge f(w_0) + \langle \nabla f(w_0), w - w_0 \rangle \Rightarrow f(w) \ge f(w_0)$ \bullet
- That is, all points w_0 s.t. $\nabla f(w_0) = 0$ are global minimizers.

₩€₩

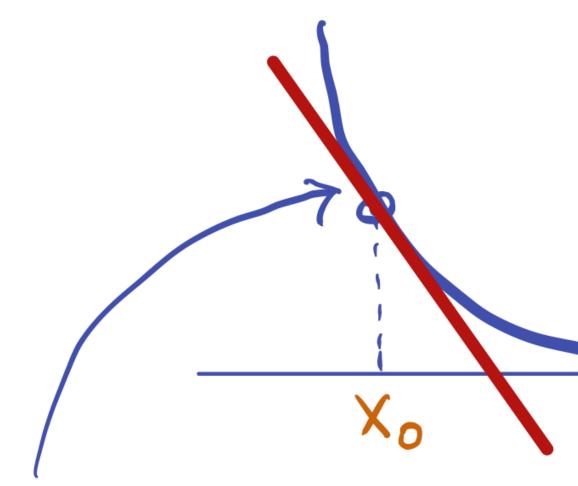
Generally, one can approx. solve convex problems with complexity with the ellipsoid method (very expensive/iteration)

First stop: Convexity

Q: Using the above properties, can we use devise an algorithm for $\min f(w)$, when the function is convex?

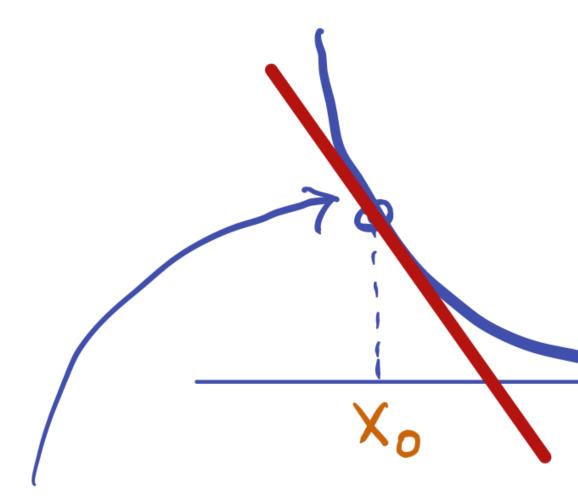


A simple idea



A simple idea

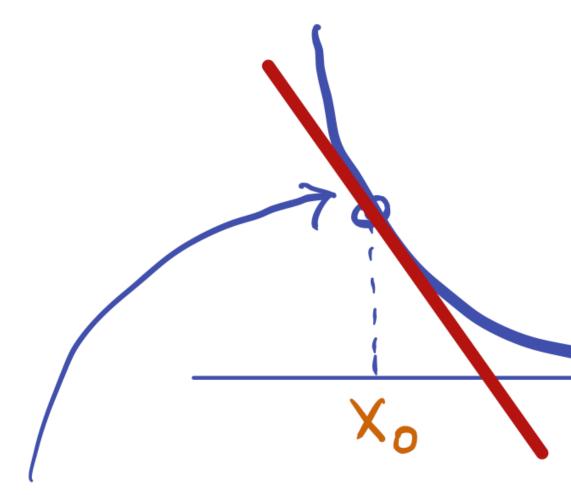
Say we initialize at w_0 , then we could try to follow the "line" $f(w_0) + \langle f(w_0), w - w_0 \rangle$!



- Say we initialize at w_0 , then we could try to follow the "line" $f(w_0) + \langle f(w_0), w w_0 \rangle$!

A simple idea

Q: But for how long? If we tried to just minimize the linear under-estimator, we'd go to -infty

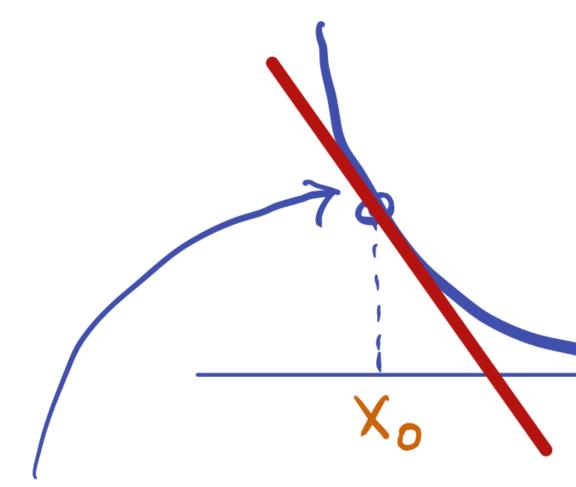


- Say we initialize at w_0 , then we could try to follow the 'line' $f(w_0) + \langle f(w_0), w w_0 \rangle$!

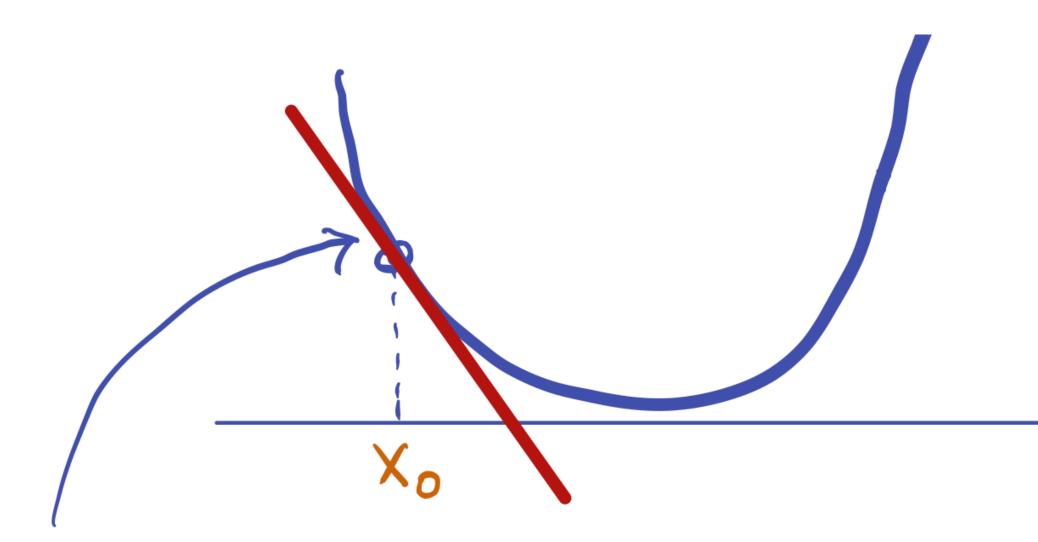
A simple idea

Q: But for how long? If we tried to just minimize the linear under-estimator, we'd go to -infty

Clue: Follow the target line, but take a small step!

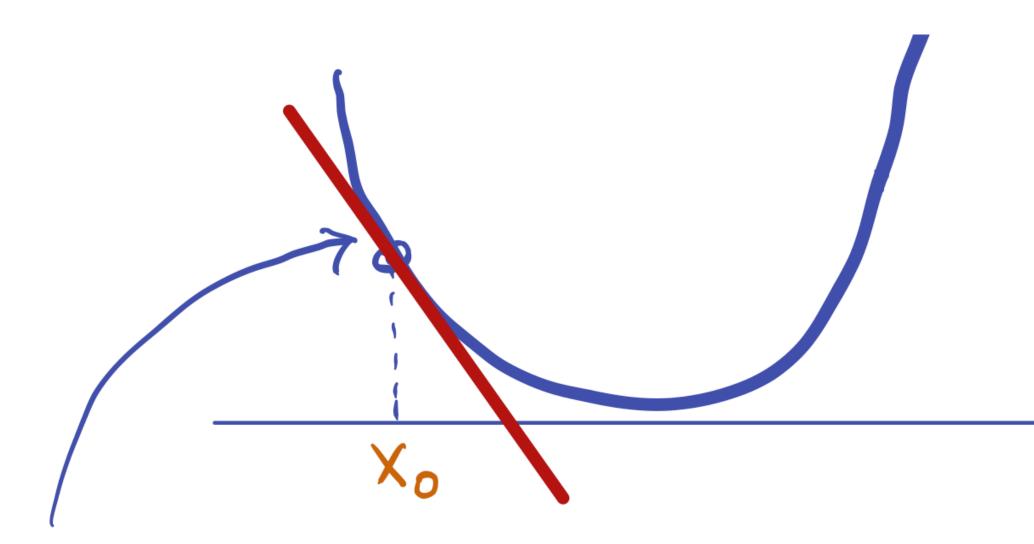


Say we initialize at w_0 , then we could try to follow the 'line' $f(w_0) + \langle f(w_0), w - w_0 \rangle$!



Say we initialize at w_0 , then we could try to follow the 'line' $f(w_0) + \langle f(w_0), w - w_0 \rangle$! Let's make our algorithm to progress by additive steps, i.e.,

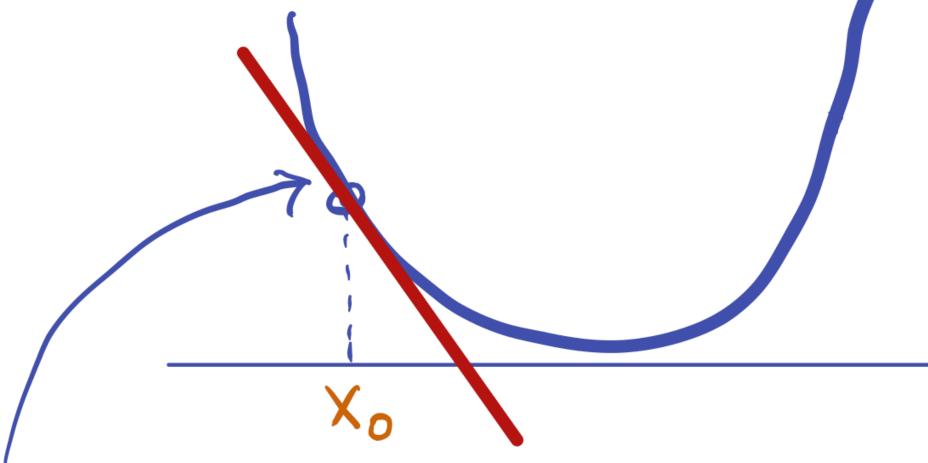
 $w_{k+1} = w_k + u_k$



Say we initialize at w_0 , then we could try to follow the 'line' $f(w_0) + \langle f(w_0), w - w_0 \rangle$! Let's make our algorithm to progress by additive steps, i.e.,

Goal? $\|\nabla f(w_{\infty})\| = 0$

 $w_{k+1} = w_k + u_k$

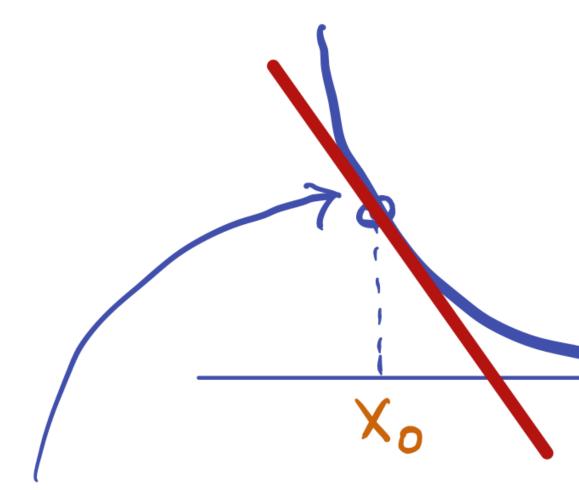


Say we initialize at w_0 , then we could try to follow the 'line' $f(w_0) + \langle f(w_0), w - w_0 \rangle$! Let's make our algorithm to progress by additive steps, i.e.,

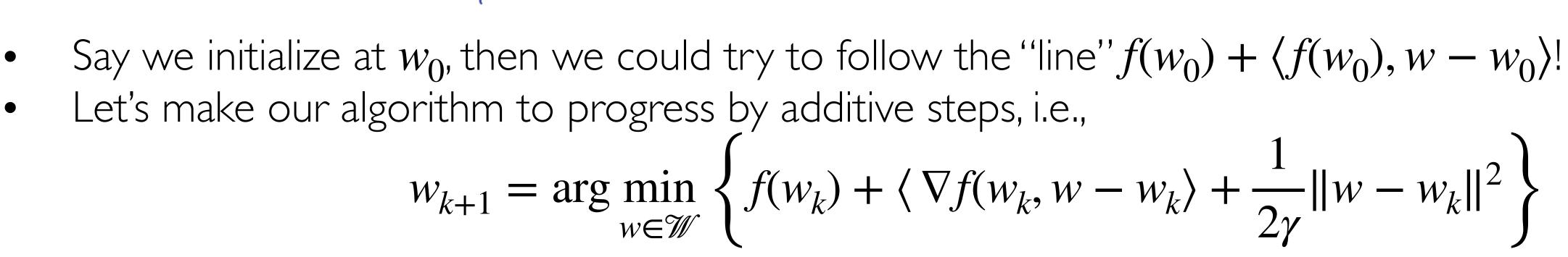
Goal? $\|\nabla f(w_{\infty})\| = 0$

 $w_{k+1} = w_k + u_k$

Clue: Minimize the linear approximation above, but not too much

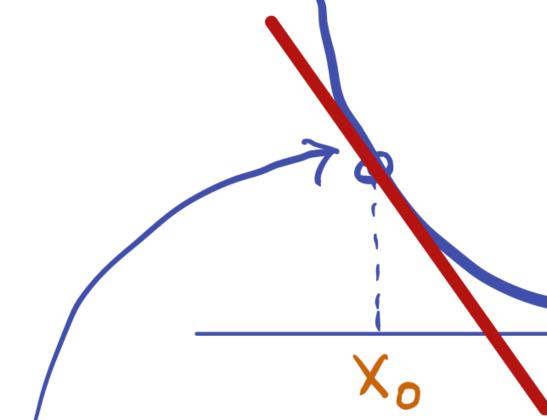


Say we initialize at w_0 , then we could try to follow the "line" $f(w_0) + \langle f(w_0), w - w_0 \rangle$!



Xo

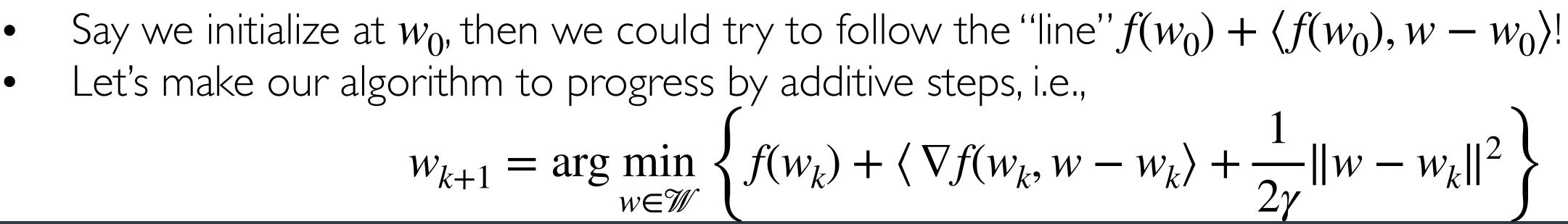
$$+\left\langle \nabla f(w_k, w - w_k) + \frac{1}{2\gamma} \|w - w_k\|^2 \right\}$$



Say we initialize at w_0 , then we could try to follow the "line" $f(w_0) + \langle f(w_0), w - w_0 \rangle$! Let's make our algorithm to progress by additive steps, i.e.,

$$w_{k+1} = \arg\min_{w \in \mathcal{W}} \left\{ f(w_k) + \langle \nabla f(w_k, w - w_k) + \frac{1}{2\gamma} \|w - w_k\|^2 \right\}$$

Think of w_{k+1} the best update, near w_k



Xo

what is the OPT solution for the above quadratic problem?

$$+\left\langle \nabla f(w_k, w - w_k) + \frac{1}{2\gamma} \|w - w_k\|^2 \right\}$$

Think of w_{k+1} the best update, near w_k

• Let's solve this, by setting grad to zero!

• Let's solve this, by setting grad to zero! $\nabla_{w} \begin{cases} f(w_{k}) + \langle \nabla f(w_{k}) \rangle \\ \Rightarrow \nabla_{w} \begin{cases} \langle \nabla f(w_{k}) \rangle \\ \varphi \rangle \end{cases}$

$$w_{k}, w - w_{k} \rangle + \frac{1}{2\gamma} ||w - w_{k}||^{2} \bigg\} = 0$$

$$w_{k}, w - w_{k} \rangle + \frac{1}{2\gamma} ||w - w_{k}||^{2} \bigg\} = 0$$

$$\Rightarrow \nabla f(w_{k}) + \frac{1}{\gamma} (w - w_{k}) = 0$$

$$\Rightarrow w_{k+1} = w_{k} - \gamma \nabla f(w_{k})$$

• Let's solve this, by setting grad to zero! $\nabla_{w} \begin{cases} f(w_{k}) + \langle \nabla f(w_{k}) \rangle \\ \Rightarrow \nabla_{w} \begin{cases} \langle \nabla f(w_{k}) \rangle \\ \varphi \rangle \end{cases}$

Ha! We just derived Gradient Descent!

$$w_{k}, w - w_{k} \rangle + \frac{1}{2\gamma} ||w - w_{k}||^{2} \bigg\} = 0$$

$$w_{k}, w - w_{k} \rangle + \frac{1}{2\gamma} ||w - w_{k}||^{2} \bigg\} = 0$$

$$\Rightarrow \nabla f(w_{k}) + \frac{1}{\gamma} (w - w_{k}) = 0$$

$$\Rightarrow w_{k+1} = w_{k} - \gamma \nabla f(w_{k})$$

Let's solve this, by setting grad to zero! $\nabla_{w} \begin{cases} f(w_{k}) + \langle \nabla f(w_{k}) \rangle \\ \Rightarrow \nabla_{w} \begin{cases} \langle \nabla f(w_{k}) \rangle \\ \varphi \rangle \end{cases}$

Ha! We just derived Gradient Descent!

How fast does GD converge? Next time! Short answer, depends on the function!

$$w_{k}, w - w_{k} \rangle + \frac{1}{2\gamma} ||w - w_{k}||^{2} \bigg\} = 0$$

$$w_{k}, w - w_{k} \rangle + \frac{1}{2\gamma} ||w - w_{k}||^{2} \bigg\} = 0$$

$$\Rightarrow \nabla f(w_{k}) + \frac{1}{\gamma} (w - w_{k}) = 0$$

$$\Rightarrow w_{k+1} = w_{k} - \gamma \nabla f(w_{k})$$

Wrapping up

- Minimizing training loss is hard in general
- ERM is hard for neural networks • ERM is not hard if you are allowed to change architecture
- Towards reasonable algorithms, Step 0: Convexity
- Step I: Gradient Descent

Next Time: Convergence rates of GD + intro to SGD, the simplest learning algorithm

reading list

Bubeck, S., 2015. Convex Optimization: Algorithms and Complexity. Foundations and Trends® in Machine Learning, 8(3-4), pp.231-357. https://arxiv.org/pdf/1405.4980.pdf

Judd, S., 1988. On the complexity of loading shallow neural networks. Journal of Complexity, 4(3), pp.177-192. https://tinyurl.com/44snxxn6

Šíma, J., 1994. Loading deep networks is hard. Neural Computation, 6(5), pp.842-850. Vancouver https://direct.mit.edu/neco/article/6/5/842/5816/Loading-Deep-Networks-Is-Hard

https://arxiv.org/pdf/2011.13550.pdf

Manurangsi, P. and Reichman, D., 2018. The computational complexity of training relu (s). arXiv preprint arXiv:1810.04207. https://arxiv.org/pdf/1810.04207.pdf

Baum, E.B., 1988. On the capabilities of multilayer perceptrons. Journal of complexity, 4(3), pp.193-215. Vancouver https://tinyurl.com/yckawxha

Advances in Neural Information Processing Systems, 34. https://proceedings.neurips.cc/paper/2021/file/69dd2eff9b6a421d5ce262b093bdab23-Paper.pdf

- Goel, S., Klivans, A., Manurangsi, P. and Reichman, D., 2020. Tight hardness results for training depth-2 ReLU networks. arXiv preprint arXiv:2011.13550.
- Rajput, S., Sreenivasan, K., Papailiopoulos, D. and Karbasi, A., 2021. An exponential improvement on the memorization capacity of deep threshold networks.