
ECE826 Lecture 4:

Limitation of Rademacher Complexity; 
Moving forward with Stability



From This To this



Contents

• Parameter count bounds for ERM

• VC dim and Rademacher Complexity generalization bounds

• Do these bounds explain generalization in modern ML?

• What are we missing?



Some Definitions
• Our goal is to find a hypothesis (classifier)  with small expected risk

• The loss measures the disagreement between predictions and reality

• Since we can’t directly measure  (our true cost function), we can 
consider optimizing its sample-average proxy, i.e., the empirical risk

• Our hope is that  is close to 

hS

R[hS]

R̂[hS] R[hS]

R[hS] = 𝔼(x,y)∼𝒟 [ℓ(hS(x); y)]

R̂[hS] =
1
n

n

∑
i=1

ℓ(hS(xi); yi)



The generalization gap
• The gap of the true cost function from the one we have access to

• Question: When is it possible to bound  by a small constant?

• The answer must depend on:  
        1) , the sample size 
        2) , the hypothesis class (and its geometry) 
        3) , the data distribution

          [4) the optimization algorithm that outputs our classifier]

ϵgen

n
ℋ
𝒟

ϵgen = |R[hS] − R̂[hS] |



Previously: parameter count bounds
• If Floats+parametric model =>  #params for good generalization 

(H.I.+Union bound over all classifiers)

• If Infinite class, then VC-dim can help in bounded the error, with not 
much better bound than #params for good generalization

• Compression arguments can lead to better results for nearly sparse/low-
rank models

n > >

n > >



Back to complexity bounds: 
Rademacher Complexity



Rademacher Complexity
• Rademacher complexity: how much can your bag of classifiers fit random noise?

Definition:

The Rademacher Complexity of  with respect to a distribution  is equal to

where,  are iid uniform  random variables.

ℋ D

ℛn(ℋ) =
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σih(xi)]
σi ±1



Rademacher Complexity
• Rademacher complexity: how much can your bag of classifiers fit random noise?

• Note that RC is between 0 and 1. 1 means my bag is expressive enough to fit random labels.
• What is RC used to bound the generalization gap?

Definition:

The Rademacher Complexity of  with respect to a distribution  is equal to

where,  are iid uniform  random variables.
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Rademacher Complexity
• Rademacher complexity: how much can your bag of classifiers fit random noise?

Theorem:
The generalization error of  is bounded as

with probability 

ℋ

max
h∈ℋ

ϵgen[h] ≤ 2RCm(ℋ) +
log(1/δ)

n
1 − δ



Rademacher Complexity
• Rademacher complexity: how much can your bag of classifiers fit random noise?

• You’d like RC to scale like ∼
1

n

Theorem:
The generalization error of  is bounded as

with probability 

ℋ

max
h∈ℋ

ϵgen[h] ≤ 2RCm(ℋ) +
log(1/δ)

n
1 − δ



Generalization for smooth losses
• [Srebro, Sridharan, Tewari, 2012 https://arxiv.org/pdf/1009.3896.pdf]

• Meta-observation When the loss in the class is zero, you get a really fast rate of “learning”!

• Q: What is the RC of classifiers in practice??

Theorem:
Let  be the best risk achieved by  on an -smooth, bounded loss function (i.e., Lipschitz 

derivative), then
 

 

L* ℋ H

max
h∈ℋ

ϵgen[h] = Õ (H ⋅ RC2
m(ℋ) + HL*RCm(ℋ))



Rademacher Complexity: Examples
• Linear classifiers

[source: https://arxiv.org/pdf/2007.11045.pdf]
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Rademacher Complexity: Examples
• Linear classifiers

[source: https://arxiv.org/pdf/2007.11045.pdf]

simpler bounds exist for linear classification, e.g., 
RC2

m(ℋ) ≤ 𝔼 max
i∈S

∥xi∥2/ n

https://arxiv.org/pdf/2007.11045.pdf


Rademacher Complexity: Examples
• Neural Networks

[source: https://www.jmlr.org/papers/volume3/bartlett02a/bartlett02a.pdf]



Rademacher Complexity: Examples
• Neural Networks

[source: https://www.jmlr.org/papers/volume3/bartlett02a/bartlett02a.pdf]

similar to fancy parameter bounds above



Do the above explain 
generalization?







Modern models can fit random labels!



Rademacher complexity = 1

Ugh



Modern models can fit random labels!

Ok so if uniform gen doesn’t explain this, maybe regularization does



Maybe regularization helps?



Maybe regularization helps?

Regularization is not the only key



How to make the algorithm 
part of the equation?



What algorithmic property begets 
generalization?

before implicit bias was cool



Stability of Learning Algorithms



• Learning algorithm  is stable if:
“the trained classifier does not depend too much on one data point”

• Let   = original data set, but with  data point replaced by 

• Def:  Stability*

• Thm: (Bousquet and Elisseeff 2002) [amazing paper, please read]
            

A(S)

Si zi z′ i

Algorithmic Stability

-stable algorithms achieve  generalization gapδ δ

𝔼S,zi
loss(A(S); zi) − loss(A(Si); zi) ≤ δ
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• Replace-one stability:
 

• Hypothesis stability: 
 

• Error stability: 
 

• Uniform stability:
  

𝔼S,zi
loss(A(S); zi) − loss(A(Si); zi) ≤ δ

𝔼S,z loss(A(S); z) − loss(A(Si); z) ≤ δ

∀S, i 𝔼z loss(A(S); z) − loss(A(Si); z) ≤ δ

∀S, i, z, loss(A(S); z) − loss(A(Si); z) ≤ δ

Many stability notions

Stability depends on: Algorithm, Data, Loss function!

Downside: it’s tricky to establish



Stability <=> Generalization



• Proof by renaming
• Let S = {z1, …, zn}, Sj = {z1, …, z′ j, …zn}

Stability = Generalization 

gen gap = (empirical risk) − (true risk)
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Boom, Stability
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Caveat: not a high probability result, 
but possible to prove them with a bit more work



Stable Algorithms generalize well

Q: Which algorithms are stable?



• Trivial example of stable algorithm: 

h(W; x) =

Example 0



• Example training set:

• Resampled training set:

• Probability of difference in predictions:

• Stability: 

Example 1: k-NN

P (hS(x) ≠ hSi(x)) =

loss(hS(x); y) − loss(hSi(x); y) = Pr (hS(x) ≠ y) − Pr (hSi(x) ≠ y)



• Example training set:

• Resampled training set:

• Probability of difference in predictions:

• Stability: 

Example 1: k-NN

P (hS(x) ≠ hSi(x)) =

loss(hS(x); y) − loss(hSi(x); y) = Pr (hS(x) ≠ y) − Pr (hSi(x) ≠ y)

VC-dimension of kNN is infinite!



• An empirical loss function is μ-PL if
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• An empirical loss function is μ-PL if

 

• Proof of stability:
•

∇
1
n ∑

i

ℓ(w; zi)
2

≥ μ∥w − w*∥

ℓ(w*; z) − ℓ(w*i ; z) =

Example 2: Minimizers of PL Functions

Why is PL Interesting

Strongly convex functions are PL!





PL-like conditions hold in neighborhoods around initialization/optima.



PL-like conditions hold in neighborhoods around initialization/optima.



•  Rademacher complexity doesn’t always give interesting bounds in practice

•  Stability begets generalization!

• Many interesting minimizers are stable

• Open Qs:
• Are the optimization algorithms stable?
• Stability and loss geometry not well understood
•  Connections to implicit regularization?
•  How fast can we certify stability?
•  Combine with compression arguments from last lecture?

Final Remarks
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Final Remarks

Why do SGD trained neural nets generalize so well?
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