FCEB26 Lecture 4

Limrtation of Rademacher Complexity;
Moving forward with Stability
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Contents

e Parameter count bounds for ERM
e VVC dim and Rademacher Complexity generalization bounds

e Do these bounds explain generalization iIn modern ML?

* What are we missing!



Some Definrtions

e Our goal is to find a hypothesis (classifier) h¢ with small expected risk
R[hS] — [E(x,y)NQZ [f(hS(x)ay)]

* [he loss measures the disagreement between predictions and reality

e Since we can't directly measure R[h¢| (our true cost function), we can
consider optimizing Its sample -average proxy, .e., the empirical risk

Rlhg] = Z £ (hg(x,): y,)

e Our hope is that R[hS] s close to R[hS]




I he generalization gap

* [he gap of the true cost function from the one we have access to

€gen = | Rlg] — Rhg] |

o Question:When is it possible to bound €,,, by a small constant!

en

* [he answer must depend on:
) n, the sample size
2) # ,the hypothesis class (and its geometry)

3) &), the data distribution
4) the optimization algorithm that outputs our classifier]




Previously: parameter count bounds

* |f Floatstparametric model => n > > #params for good generalization
(H.l.+Union bound over all classifiers)

e |f Infinite class, then VC-dim can help in bounded the error, with not
much better bound than n > > #params for good generalization

e Compression argsuments can lead to better results for nearly sparse/low-
rank models



Back to complexity bounds:
Rademacher Complexity



Rademacher Complexity

 Rademacher complexity: how much can your bag of classifiers fit random noise?

Definrtion:

The Rademacher Complexity of Z with respect to a distribution D is equal to

1 n
R () =—Eg. pil, l SUpP Z Gih(xi)]

n he# i=1
where, ¢; are iid uniform £1 random variables.




Rademacher Complexity

 Rademacher complexity: how much can your bag of classifiers fit random noise?

Definrtion:

The Rademacher Complexity of Z with respect to a distribution D is equal to

1 n
R () =—Eg. pil, l SUpP Z Gih(xi)]

n he# i=1
where, ¢; are iid uniform £1 random variables.

* Note that RC is between 0 and |. | means my bag Is expressive enough to fit random labels.
* What is RC used to bound the generalization gap!?




Rademacher Complexity

 Rademacher complexity: how much can your bag of classifiers fit random noise?

[ heorem:
The generalization error of Z is bounded as

log(1/0)
max €,,,h] < 2RC, (#) +
heX n

with probability 1 — o




Rademacher Complexity

 Rademacher complexity: how much can your bag of classifiers fit random noise?

[ heorem:
The generalization error of Z is bounded as

log(1/0)
max €,,,h] < 2RC, (#) +
heX n

with probability 1 — o

1

. Youd like RC to scale like ~ ——
n



(Generalization for smooth losses

* [Srebro, Sridharan, Tewarl, 2012 https://arxiv.org/pdf/ 1009.3896.pdf]

T heorem:

et L* be the best risk achieved by #Z on an H-smooth, bounded loss function (i.e., Lipschitz
derivative), then

max €,,,[h] = O (H RC2(Z) + \/HL*RCm(%)>
heA

 Meta-observation When the loss In the class I1s zero, you get a really fast rate of “learning’’!

e (O:What I1s the RC of classifiers in practice!?



Rademacher Complexity: Examples

e | \near classifiers

[source: https://arxiv.org/pdi/200/.1 1045.pdf]



https://arxiv.org/pdf/2007.11045.pdf

Rademacher Complexity: Examples

e | \near classifiers

Mg = (1M1,

.y | Mallp) |, Wwhere M;s are the columns of M

Theorem 1 Let ), = {x » w-x:|w|, < W} be a family of linear functions defined over
RY with bounded weight in £,-norm. Then, the empirical Rademacher complexity of F, for

a sample 8§ = (X1,...,X;,) admits the following upper bounds:
mV/21og(2d) [X |2 ifp=1
R r(Z5)) o
Rs(Fp) <9 ‘/?nW \/QE | X 2 px ifl<p<2
\%”XT 2% if p22

where X 18 the d x m-matriz with x;8 as columns: X

(X1 ...X,]. Furthermore, the

constant factor in the inequality for the case 1 < p <2 can be bounded as follows:

e—%\/ES V2

T(E5)

V&

L A

1
p*

< e—%\/p* + 1.

[source: https://arxiv.org/pdi/200/.1 1045.pdf]
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Rademacher Complexity: Examples

e | \near classifiers

Rs (Fp) < { L2W 2| Xl if1<ps2

%”XT l2,p* if p22

where X s the d x m-matriz with x;8 as columns: X = [Xy...X|. Furthermore, the
constant factor in the inequality for the case 1 < p <2 can be bounded as follows:

F( 2*2-{-1 D #

e'%\/ES\/ﬁ[ Jr

< e'%\/p* + 1.

[source: https://arxiv.org/pdi/200/.1 1045.pdf]
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Rademacher Complexity: Examples

e Neural Networks

Theorem 18 Suppose that o : R — [—1, 1] has Lipschitz constant L and satisfies 0(0) = 0.
Define the class computed by a two-layer neural network with 1-norm weight constraints as

F = {:1: — Zwia (v; - ) : ||lwl1 <1, ||vi[1 < B}.

Then for x1,... ,x, in RF,

R 1/2 e
Gn(F) < CLB(ll’l k) max Z (zz] B xij,)Z |

— n o’o,
J>J \ i—1

where x; = (Ti1,... ,Tik)-

[source: https://www.mlr.org/papers/volume3/bartlettO2a/bartlettO2a.pdf]



Rademacher Complexity: Examples

e Neural Networks

Theorem 18 Suppose that 0 : R — [—1, 1] has Lipschitz constant L and satisfies o(0) = 0.

.'." r ) L) A A

1=1

where x; = (Ti1,... ,Tik).

[source: https://www.mlr.org/papers/volume3/bartlettO2a/bartlettO2a.pdf]



Do the above explain
oeneralization?
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Figure 1: Fitting random labels and random pixels on CIFAR10. (a) shows the training loss of
various experiment settings decaying with the training steps. (b) shows the relative convergence
time with different label corruption ratio. (c) shows the test error (also the generalization error since
training error 1s ) under different label corruptions.
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Maybe regularization helps!

Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset.
Performance with and without data augmentation and weight decay are compared. The results of
fitting random labels are also included.

model # params random crop weight decay train accuracy test accuracy
yes yes 100.0 89.05
: yes no 100.0 89.31
Inception 1,649,402 o yes 100.0 26.03
no no 100.0 85.75
(fitting random labels) no no 100.0 9.78
Inception w/o no yes 100.0 83.00
BatchNorm 1,649,402 no no 100.0 82.00
(fitting random labels) no no 100.0 10.12
yes yes 99.90 81.22
yes no 99.82 79.66
Alexnet 1,387,786 no yes 100.0 77.36
no no 100.0 76.07
(fitting random labels) no no 99.82 9.86
no yes 100.0 53.35
MLE 5x512 1,735,178 no no 100.0 52.39
(fitting random labels) no no 100.0 10.48
no yes 99.80 50.39
MLP 1x512 1,209,866 o o 100.0 50.51
(fitting random labels) no no 99.34 10.61
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Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset.
Performance with and without data augmentation and weight decay are compared. The results of
fitting random labels are also included.

model # params random crop weight decay train accuracy test accuracy
yes yes 100.0 89.05
: yes no 100.0 89.31
Inception 1,649,402 o yes 100.0 26.03
no no 100.0 85.75
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BatchNorm 1,649,402 no no 100.0 82.00
(fitting random labels) no no 100.0 10.12
yes yes 99.90 81.22
yes no 99.82 79.66
Alexnet 1,387,786 1o yes 100.0 77.36
no no 100.0 76.07
(fitting random labels) no no 99.82 9.86
MLP3x512 1,735,178 yes 109.9 23-35




—low to make the algorithm
part of the equation!?



VWhat algorithmic property begets
oeneralization?

before iImplicit bias was cool
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Algorithmic Stability

earning algorithm A(S) is stable If:
“the trained classifier does not depend too much on one data point”

Let S’ = original data set, but with z; data point replaced by Z;

Def: Stability™

=5, [105S(A(S); 2;) — loss(A(S);z) | <6

Thm: (Bousquet and Elisseeff 2002) [amazing paper, please read]

0-stable algorithms achieve 0 generalization gap




Many stability notions

* Replace-one stabillity:

l0ss(A(S); ;) — loss(A(SY): Z;) | <0

S9Zi
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Many stability notions

Replace-one stabllity:

=2 | 105S(A(S); 2;) — \oss(A(Si);zi)| <

Hypothesis stability:

l0ss(A(S); z) — \oss(A(Si);Z)| <o

=P

-rror stability:

VS, 0ss(A(S); 2) — loss(A(SY):; 2)| < 6

Uniform stability:
VS,i,z, |loss(A(S);2) —loss(A(SY):2)| <6



Many stability notions

-rror stability:

VS,i E. |loss(A(S);2) — loss(A(SY):2)| < &

Uniform stability:
VS,i,z, |loss(A(S);2) —loss(A(SY):2)| <6



Many stability notions




Stability <=> (Generalization



Stability = Generalization

’roof by renaming
et S =120 =125 % -2,

oen gap = (empirical risk) — (true risk)
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Stability = Generalization

* Proof by renaming |

. LletS={z,....5,}, & ={zp...2...5,)

oen gap = (empirical risk) — (true risk)

- —S,A,7 A T W Wik >
i=1

5.4,1055(A(S); 7)) — Eg 4 A0sS(A(S); 2)

5.2 |105S(A(S); 7)) — 0ss(A(S); 7))




Stable Algorithms generalize wel

Q:Which algorithms are stable?



Example O

* Irnivial example of stable algorithm:

h(W; x) =



-xample |:k-NN

-xample training set:

Resampled training set:

Probability of difference In predictions:

P (hy(x) # he(x)) =

Stabilrty:
ability 05s(hg(x); y) — loss(hg(x); y) = Pr (hs(x) # y) — Pr (hg(x) # y)



-xample |:k-NN

* Example training set:

o Stablility:

loss(hg(x); y) — loss(hgi(x); y) = Pr (hS(x) + y) — Pr (hgi(x) 7 Y)



cxample 2: Minimizers of PL Functions

An empirical loss function is y-PL if

1
V— ) C(w;z > ullw — w*
- Z w;z) || > ull u

Proof of stabllity:
c(W* z) —C(WFiz2) =



cxample 2: Minimizers of PL Functions

An empirical loss function is y-PL 1t




cxample 2: Minimizers of PL Functions

An empirical loss function is y-PL 1t
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Local minima Global minima

h?
I |
2D
bDepar (a) Loss landscape of under-parameterized models (b) Loss landscape of over-parameterized models Jetworks
Figure 1: Panel (a): Loss landscape is locally convex at local minima. Panel (b): Loss landscape ng

incompatible with local convexity as the set of global minima is not locally linear. o edu
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Final Remarks

Rademacher complexity doesn't always give interesting bounds In practice

Stability begets generalization!

Many interesting minimizers are stable

Open Qs:

Are the optimization algorithms stable?

Stability ar

d loss geomr
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Connectio
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ot well understood
arization!

How fast can we certify stability?

Combine with compression arguments from last lecture!
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Final Remarks

Rademacher complexity doesn't always give interesting bounds In practice
Stability begets generalization!

Many interesting minimizers are stable

Open Qs:
Are the optimization algorithms stable? frat
Stability and loss geometry not well understood
Connections to implicit regularization?

How fast can we certifty stability?
Combine with compression arguments from last lecture!

Why do 5GD trained neural nets generalize so well?
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