
ECE826 Lecture 3:

Concentration of the Empirical Risk 

Part 2: Fancy parameter counts/
complexity bounds



From This To this



Contents

• Parameter count bounds for ERM

• VC dim and Rademacher Complexity generalization bounds

• Do these bounds explain generalization in modern ML?

• What are we missing?



Some Definitions
• Our goal is to find a hypothesis (classifier)  with small expected risk

• The loss measures the disagreement between predictions and reality

hS

R[hS] = 𝔼(x,y)∼𝒟 [ℓ(hS(x); y)]



Some Definitions
• Our goal is to find a hypothesis (classifier)  with small expected risk

• The loss measures the disagreement between predictions and reality

• Since we can’t directly measure  (our true cost function), we can 
consider optimizing its sample-average proxy, i.e., the empirical risk

• Our hope is that  is close to 

hS

R[hS]

R̂[hS] R[hS]

R[hS] = 𝔼(x,y)∼𝒟 [ℓ(hS(x); y)]

R̂[hS] =
1
n

n

∑
i=1

ℓ(hS(xi); yi)



The generalization gap
• The gap of the true cost function from the one we have access to

• Question: When is it possible to bound  by a small constant?ϵgen

ϵgen = |R[hS] − R̂[hS] |



The generalization gap
• The gap of the true cost function from the one we have access to

• Question: When is it possible to bound  by a small constant?

• The answer must depend on:  
        1) , the sample size 
        2) , the hypothesis class (and its geometry) 
        3) , the data distribution

          [4) the optimization algorithm that outputs our classifier]

ϵgen

n
ℋ
𝒟

ϵgen = |R[hS] − R̂[hS] |



Previously: parameter count bounds
• If Floats+parametric model => n >> #params for good generalization 

(H.I.+Union bound over all classifiers)



Previously: parameter count bounds
• If Floats+parametric model => n >> #params for good generalization 

(H.I.+Union bound over all classifiers)

• Traditional theory for generalization bounds tries to handle infinite 
classes.

• VC-dimension, fat-shattering dimension, rademacher complexity, etc

• Can these more elaborate approaches result in interesting gen bounds 
for real models/data?



Measuring Complexity



Bounding generalization via complexity measure

• General idea:

 

Bounding the expressiveness of a model => bounding the number of bits needed to describe it
 => bounding the generalization gap. 

In other words, the less expressive/complex a class, the less surprises we’ll have at test time.
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Bounding generalization via complexity measure

• General idea:

 

Bounding the expressiveness of a model => bounding the number of bits needed to describe it
 => bounding the generalization gap. 

In other words, the less expressive/complex a class, the less surprises we’ll have at test time.

a line that passes through 
points A and B

a curve that would take many 
more words to describe



Bounding generalization via complexity measure

• General idea:

 
• Standard techniques: VC dimension and Rademacher Complexity

• Q: How do they work, what types of bounds do they imply?

Bounding the expressiveness of a model => bounding the number of bits needed to describe it
 => bounding the generalization gap. 

In other words, the less expressive/complex a class, the less surprises we’ll have at test time.



VC dimension
• VC dimension = measures expressiveness of a hypothesis class

 

Definition:
The VC-dimension of  is the largest number  such that there exist a set  of  samples that is 
shattered by a classifier , i.e., for any labels  of ,  for all 

ℋ d S d
h ∈ ℋ y1, …, yn S h(xi) = yi xi ∈ S
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VC dimension
• VC dimension = measures expressiveness of a hypothesis class

 
• E.g., largest set of images that a classifier can give any set of labels.

• Similar to memorization capacity, but not quite.

• Q: how does VC connect with generalization error?

Definition:
The VC-dimension of  is the largest number  such that there exist a set  of  samples that is 
shattered by a classifier , i.e., for any labels  of ,  for all 

ℋ d S d
h ∈ ℋ y1, …, yn S h(xi) = yi xi ∈ S



VC dimension
• VC dimension can handle infinite classes
Theorem:

For any , suppose that , and we draw a sample  of size

then with probability at least , we have that 

ϵ, δ > 0 VCdim(ℋ) = d S
n ≥

C
ϵ2 (d log(1/ϵ) + log(1/δ)

1 − δ max
h∈ℋ

ϵgen[h] ≤ ϵ



VC dimension
• VC dimension can handle infinite classes
Theorem:

For any , suppose that , and we draw a sample  of size

then with probability at least , we have that 

ϵ, δ > 0 VCdim(ℋ) = d S
n ≥

C
ϵ2 (d log(1/ϵ) + log(1/δ)

1 − δ max
h∈ℋ

ϵgen[h] ≤ ϵ

In fact there is a very famous theorem that says that a class cannot be 
“learned” in smaller than the above number of samples (in general).



VC dimension
• VC dimension can handle infinite classes
Theorem:

For any , suppose that , and we draw a sample  of size

then with probability at least , we have that 

ϵ, δ > 0 VCdim(ℋ) = d S
n ≥

C
ϵ2 (d log(1/ϵ) + log(1/δ)

1 − δ max
h∈ℋ

ϵgen[h] ≤ ϵ

We need again , for good generalization

Q: does this lead to non-vacuous bounds in practice?

n > VC(ℋ)



VC dimension
• VC dimension = measure of expressiveness of a hypothesis class
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Examples: 
• , 
• = neural nets with thresholds and  parameters, 
•  = ReLU NNs with  parameters and depth D 
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• VC dimension = measure of expressiveness of a hypothesis class

Examples: 
• , 
• = neural nets with thresholds and  parameters, 
•  = ReLU NNs with  parameters and depth D 

•For NNs it seems that VC dimension > #params.. Worse generalization than parameter count 
on FP networks…

ℋ = {h |h(x) = sign(wTx − b)} VC(ℋ) = d + 1
ℋ d VC(ℋ) = O(d log d)
ℋ d VC(ℋ) = O(dD log d)

Definition:
The VC-dimension of  is the largest number  such that there exist a set  of  samples that is 
shattered by a classifier , i.e., if  are the labels of , then  for all 

ℋ d S d
h ∈ ℋ y1, …, yn S h(xi) = yi (xi, yi) ∈ S

Downsides of VC: talks about the worst possible set of data points, 
rather than a typical one. Also looks at the most expressive classifi





VC dimension
• VC dimension = measure of expressiveness of a hypothesis class

Examples: 
• , 
• = neural nets with thresholds and  parameters, 
•  = ReLU NNs with  parameters and depth D 

•For NNs it seems that VC dimension > #params.. Worse generalization than parameter count 
on FP networks…

ℋ = {h |h(x) = sign(wTx − b)} VC(ℋ) = d + 1
ℋ d VC(ℋ) = O(d log d)
ℋ d VC(ℋ) = O(dD log d)

Definition:
The VC-dimension of  is the largest number  such that there exist a set  of  samples that is 
shattered by a classifier , i.e., if  are the labels of , then  for all 

ℋ d S d
h ∈ ℋ y1, …, yn S h(xi) = yi (xi, yi) ∈ S

Can we improve by incorporating compression arguments?



Refining parameter counts by 
a compression argument



Getting more out of param. counts
• Let’s assume that our bag of classifiers is “compressible”

Assumption (hypothetical):

Assume that every model in  (infinite class) can be mapped to a model in , which can be 
described by  fixed precision parameters, at the cost of  in overall loss.
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Getting more out of param. counts
• Let’s assume that our bag of classifiers is “compressible”

Let’s sketch this picture:
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Getting more out of param. counts
• Let’s assume that our bag of classifiers is “compressible”

• Proof: Hoeffding’s Inequality + Union bound over all possible  models ( )
• Why is this useful?
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Getting more out of param. counts
• Let’s assume that our bag of classifiers is “compressible”

• Proof: Hoeffding’s Inequality + Union bound over all possible  models ( )
• Why is this useful?

O(Cp) C = o(1)

Assumption (hypothetical):

Assume that every model in  (infinite class) can be mapped to a model in , which can be 
described by  fixed precision parameters, at the cost of  in overall loss.

ℋ ℋδ
p δ

Lemma:

Let  be an upper bound on the abs. value of the params used to represent a model in . Then, b ℋ

max
h∈ℋ

ϵgen[h] ≤
p ⋅ log b

n
+ δ

Nothing insightful so far
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• Let’s assume that we are working with a FC network of ReLUs
•  is the width, and  the depth,  the weight matrix of layer W D Ai ∈ ℝdi×di+1 i

Lemma: 
[Braverman et al, COLT21 http://proceedings.mlr.press/v134/braverman21b/braverman21b.pdf]

Every weight matrix matrix  can be approximated by a sparse matrix  such that
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where  (numerical sparsity) and  (stable rank)

Ai ∈ ℝdi×di+1 ̂Ai
∥Ai − ̂Ai∥ ≤ ϵ∥Ai∥

Õ
ns(Ai) ⋅ sr(Ai)

ϵ2
+

di+1 ⋅ ns(Ai) ⋅ sr(Ai)

ϵ

ns(A) = ∥A∥2
1/∥A∥2

F sr(A) = ∥A∥2
F/∥A∥2

2

http://proceedings.mlr.press/v134/braverman21b/braverman21b.pdf


NNs may be very compressible!
TL;DR: if matrix is approximately sparse/low-rank, we can through away 
many elements.

Corollary: 
[Braverman et al, COLT21 http://proceedings.mlr.press/v134/braverman21b/braverman21b.pdf]
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This may be much smaller than  D ⋅ W2

http://proceedings.mlr.press/v134/braverman21b/braverman21b.pdf


What does that lemma mean for  ℋ
Lemma:
Assume that all spectral norms for all weight matrices is less than 1. Then, any model in  can be 
replaced by one that has  parameters, and leads to output error

 

where 

ℋ
psmall(ϵ)

sup
∥x∥2≤1

∥f(x) − ̂f(x)∥2 ≤ O(Dϵ)

f(x) = WDσ(WD−1σ(…W2σ(W1x)))

• Proof sketch (2-layers):



What does that lemma mean for  ℋ
Lemma:
Assume that all spectral norms for all weight matrices is less than 1. Then, any model in  can be 
replaced by one that has  parameters, and leads to output error

 

where 

ℋ
psmall(ϵ)

sup
∥x∥2≤1

∥f(x) − ̂f(x)∥2 ≤ O(Dϵ)

f(x) = WDσ(WD−1σ(…W2σ(W1x)))

• Hence, we’d have  for an error of  psmall(ϵ/D) O(ϵ)



Ok but that doesn’t lead to finite H?

Proposition:
When the spectral norm is bounded by a constant , all elements of the sparsified weight matrices 
will also be bounded by a constant. Every weight can then be replaced by a quantized version of 
itself such that  , as long as we use  bits of precision

c

∥Asparsified − Aq
sparsified∥ ≤ ϵ O(log(W/ϵ))

•Next step: Replace each of the parameters of the compressed model with a quantized version.
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Ok but that doesn’t lead to finite H?

Proposition:
When the spectral norm is bounded by a constant , all elements of the sparsified weight matrices 
will also be bounded by a constant. Every weight can then be replaced by a quantized version of 
itself such that  , as long as we use  bits of precision

c

∥Asparsified − Aq
sparsified∥ ≤ ϵ O(log(W/ϵ))

•Next step: Replace each of the parameters of the compressed model with a quantized version.

•Q: But how do we represent each of these networks:
A: total parameters = sum of all sparsities*precision + positions of elements*precision

•Remember though we need  in the bound above. Assume that all widths are the same (keep the 
second term for simplicity), we obtain 

Õ (
D

∑
i=1

(ns(Ai) ⋅ sr(Ai)/ϵ2 + di+1 ⋅ ns(Ai) ⋅ sr(Ai) /ϵ))
ϵ/D

Õ ( D
ϵ

D

∑
i=1

W ⋅ ns(Ai) ⋅ sr(Ai))



Final step, choose ε
•It should be relatively clear at this point that any classifier in  can be mapped to one in , which 
represents all quantized+sparsified models. Therefore the generalization gap should be

ℋ ℋδ
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Let  be an upper bound on the value of the parameters required to represent a model in . 
Then, 
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•It should be relatively clear at this point that any classifier in  can be mapped to one in , which 
represents all quantized+sparsified models. Therefore the generalization gap should be

The above requires us to use  parameters. If δ is decaying then this 

leads to “suboptimal” rates, yet still gives non trivial bounds.
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Final step, choose ε
•It should be relatively clear at this point that any classifier in  can be mapped to one in , which 
represents all quantized+sparsified models. Therefore the generalization gap should be

The above requires us to use  parameters. If δ is decaying then this 

leads to “suboptimal” rates, yet still gives non trivial bounds.
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Lemma:

Let  be an upper bound on the value of the parameters required to represent a model in . 
Then, 

pδ ℋδ

max
h∈ℋ

ϵgen[h] ≤
pδ ⋅ log b

n
+ δ

we don’t need n>> #params anymore



Very similar in spirit to



Another way of thinking about this

• If among the classifiers in  there is “large correlation”, we should not pay for it

• Equivalent to the idea that each event in the union bound can be very dependent to 
other events (e.g.,  is bad may imply  is very bad!)

ℋ

h1 h2



Open: Ways to improve?

• What if training data are compressible? (some very old papers on this)

• Compression beyond sparsity/rank (info theoretic approaches?)

• How far can we go with this?



Do the above explain 
generalization?



Next time: 
generalization though an algorithmic 

lens



Next time
• The gap of the true cost function from the one we have access to

• Question: When is it possible to bound  by a small constant?

• The answer must depend on:  
        1) , the sample size 
        2) , the hypothesis class (and its geometry) 
        3) , the data distribution

          [4) the optimization algorithm that outputs our classifier]

ϵgen

n
ℋ
𝒟

ϵgen = |R[hS] − R̂[hS] |



Conclusion

• Algorithm/Data agnostic generalization bounds are… tricky

• Can they explain the good performance of large models?

• Next: Generalization beyond “parameter counts” & complexity


