FCE826 Lecture 3:

Concentration of the Empirical Risk

Part 2: Fancy parameter counts/
complexity bounds
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Contents

e Parameter count bounds for ERM
e VVC dim and Rademacher Complexity generalization bounds

e Do these bounds explain generalization iIn modern ML?

* What are we missing!



Some Definrtions

e Our goal is to find a hypothesis (classifier) h¢ with small expected risk
R[hS] — [E(x,y)NQZ [Z/ﬂ(hS(x)ay)]

* [he loss measures the disagreement between predictions and reality



Some Definrtions

e Our goal is to find a hypothesis (classifier) h¢ with small expected risk
R[hS] — [E(x,y)NQZ [f(hS(x)ay)]

* [he loss measures the disagreement between predictions and reality

e Since we can't directly measure R[h¢| (our true cost function), we can
consider optimizing Its sample -average proxy, .e., the empirical risk

Rlhg] = Z £ (hg(x,): y,)

e Our hope is that R[hS] s close to R[hS]




I he generalization gap

* [he gap of the true cost function from the one we have access to

€gen = | Rlg] — Rhg] |

o Question:When is it possible to bound €,,, by a small constant!
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* [he gap of the true cost function from the one we have access to

€gen = | Rlg] — Rhg] |

o Question:When is it possible to bound €,,, by a small constant!

en

* [he answer must depend on:
) n, the sample size
2) # ,the hypothesis class (and its geometry)

3) &), the data distribution
4) the optimization algorithm that outputs our classifier]




Previously: parameter count bounds

e |f Floats+parametric model => n >> #params for good generalization
(H.l.+Union bound over all classifiers)



Previously: parameter count bounds

e |f Floats+parametric model => n >> #params for good generalization
(H.l.+Union bound over all classifiers)

e [raditional theory for generalization bounds tries to handle infinite
classes.

e VC-dimension, fat-shattering dimension, rademacher complexity, etc

e Can these more elaborate approaches result in interesting sen bounds
for real models/data’



Measuring Complexity




Bounding generalization via complexity measure

e (General Idea:

Bounding the expressiveness of a model => bounding the number of bits needed to describe it
=> bounding the generalization gap.

In other words, the less expressive/complex a class, the less surprises we'll have at test time.
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Bounding generalization via complexity measure

e (General Idea:

Bounding the expressiveness of a model => bounding the number of bits needed to describe it
=> bounding the generalization gap.

In other words, the less expressive/complex a class, the less surprises we'll have at test time.

e Standard techniques:VC dimension and Rademacher Complexity

e Q: How do they work, what types of bounds do they imply?




VC dimension

e VVC dimension = measures expressiveness of a hypothesis class

Definition:
The VC-dimension of Z is the largest number d such that there exist a set § of d samples that is
shattered by a classifier h € &, i.e., for any labels yy, ..., y, of §, h(x;) = y; forall x; € §
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VC dimension

e VVC dimension = measures expressiveness of a hypothesis class

Definition:
The VC-dimension of Z is the largest number d such that there exist a set § of d samples that is
shattered by a classifier h € &, i.e., for any labels yy, ..., y, of §, h(x;) = y; forall x; € §

e F.o, largest set of Images that a classifier can give any set of labels.

e Similar to memorization capacity, but not quite.

e Q:how doesVC connect with generalization error?



VC dimension

e \/C dimension can handle infinite classes
Theorem:

For any €,0 > 0, suppose that VCdim(#') = d, and we draw a sample § of size

C
n>— (dlog(l/e) + log(l/é)
c2

then with probability at least 1 — o, we have that maxe,, [h] < €
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VC dimension

e \/C dimension can handle infinite classes

Theorem:
For any €,0 > 0, suppose that VCdim(#') = d, and we draw a sample § of size

C
n>— (dlog(l/e) + 10g(1/5)
c2

[h] L€

then with probability at least 1 — o, we have that max e
hex

gen




VC dimension

e VC dimension = measure of expressiveness of a hypothesis class

Definition:
The VC-dimension of # is the largest number d such that there exist a set § of d samples that is
shattered by a classifier h € &, i.e,if yy, ..., y, are the labels of §, then h(x;) = y; forall (x;,y,) € §
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o # = RelLLU NNs with d parameters and depth D VC(#) = O(dD log d)




VC dimension

e VC dimension = measure of expressiveness of a hypothesis class

Definrtion:

The VC-dimension of # is the largest number d such that there exist a set § of d samples that is
shattered by a classifier h € &, i.e,if yy, ..., y, are the labels of §, then h(x;) = y; forall (x;,y,) € §

-Xamples:

o H = {h\h(x) = sign(w’x — b)} VCO(H) =d+ 1

o /= neural nets with thresholds and d parameters, VC(#) = O(d log d)
o # = RelLLU NNs with d parameters and depth D VC(#) = O(dD log d)

*For NINs it seems that VC dimension > #params..VWorse generalization than parameter count
on FP networks. ..
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e VC dimension = measure of expressiveness of a hypothesis class

Definition:
The VC-dimension of Z is the largest number d such that there exist a set § of d samples that is
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VC dimension

e VC dimension = measure of expressiveness of a hypothesis class

Definition:
The VC-dimension of Z is the largest number d such that there exist a set § of d samples that is
shattered by a classifier h € &, i.e,if yy, ..., y, are the labels of §, then h(x;) = y; forall (x;,y,) € §

-xamples:

o X ={h|h(x)=signiw!x—b)\, VC(F)=d+ 1




Refining parameter counts by
a compression argument



Getting more out of param. counts

e [et's assume that our bag of classifiers i1s “compressible”

Assumption (hypothetical):

Assume that every model in Z (infinite class) can be mapped to a model in # 5, which can be
described by p fixed precision parameters, at the cost of 0 in overall loss.



Getting more out of param. counts

e [et's assume that our bag of classifiers i1s “compressible”

Assumption (hypothetical):

Assume that every model in Z (infinite class) can be mapped to a model in # 5, which can be
described by p fixed precision parameters, at the cost of 0 in overall loss.

Let's sketch this picture:
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e Proof: Hoeffding’s Inequality + Union bound over all possible O(C?) models (C = o(1))



Getting more out of param. counts

e [et's assume that our bag of classifiers i1s “compressible”

Assumption (hypothetical):

Assume that every model in Z (infinite class) can be mapped to a model in # 5, which can be
described by p fixed precision parameters, at the cost of 0 in overall loss.

Lemma:

Let b be an upper bound on the abs. value of the params used to represent a model in Z . Then,

Tog b
max €, [h] < \/ P82 46
heX n

e Proof: Hoeffding’s Inequality + Union bound over all possible O(C?) models (C = o(1))
* Why is this useful?




Getting more out of param. counts

e [et's assume that our bag of classifiers i1s “compressible”

Assumption (hypothetical):

Assume that every model in Z (infinite class) can be mapped to a model in # 5, which can be
described by p fixed precision parameters, at the cost of 0 in overall loss.

Lemma:

Let b be an upper bound on the abs. value of the params used to represent a model in Z . Then,
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e [ets assume that we are working with a FC network of RelLUs
e Wisthe width,and D the depth, A; € | 4Xdis1 the weight matrix of layer i
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e Wisthe width,and D the depth, A; € | 4Xdis1 the weight matrix of layer i

_emma:
Braverman et al, COLT2| http://proceedings.mlrpress/v| 34/braverman? | b/braverman2 | b.pdf]

d;Xd,

Every weight matrix matrix A; € | +1 can be approximated by a sparse matrix Ai such that
|A;, — A || < €l||lA;]| with expected sparsity


http://proceedings.mlr.press/v134/braverman21b/braverman21b.pdf

NNs may be very compressiple!

e | ets assume that we are working with a FC network of RelLUs
e Wisthe width,and D the depth, A; € | 4Xdis1 the weight matrix of layer i

_emma:
Braverman et al, COLT2| http://proceedings.mlrpress/v| 34/braverman? | b/braverman2 | b.pdf]

d;Xd,

Every weight matrix matrix A; € | +1 can be approximated by a sparse matrix Ai such that
|A;, — A || < €l||lA;]| with expected sparsity

O ns(A;) - sr(A;) + \/di 1 ns(Ay) - sy

€2 €

where ns(A) = HAH%/HAH% (numerical sparsity) and sr(A) = HAH%/HAH% (stable rank)


http://proceedings.mlr.press/v134/braverman21b/braverman21b.pdf

NNs may be very compressiple!

TLDR T matrix 1s approximately sparse/low-rank, we can through away
many elements.

Corollary:
[Braverman et al, COLT 2| http://proceedings.mlrpress/v | 34/braverman? | b/braverman? | b.pdf]

Jotal number of effective parameters
D

Psman(€) = O ( 2 (ns(Ai) : sr(Ai)/e2 + \/di - Ns(A)) - sr(AQ/e))

i=1
where ns(A) = HAH%/HAH% (numerical sparsity) and sr(A) = HAH%/HAH% (stable rank)
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NNs may be very compressible!

TLDR T matrix 1s approximately sparse/low-rank, we can through away
many elements.

Corollary:
[Braverman et al, COLT2| http://proceedings.mlrpress/v | 34/braverman? | b/braverman? | b.pdf]

JTotal number of effective parameters
D

Psman(€) = 0, ( Z <ns(Ai) - sr(Al-)/e2 +1/dipq - ns(A) - sr(Al-)/e))

i=1
where ns(A) = HAH%/HAH% (numerical sparsity) and sr(A) = HAH%/HAH% (stable rank)



http://proceedings.mlr.press/v134/braverman21b/braverman21b.pdf

What does that lemma mean for#

Lemma:
Assume that all spectral norms for all weight matrices is less than |.Then, any model in #Z can be
replaced by one that has p,,..,(€) parameters, and leads to output error

sup |lf(x) = f(x)l, < O(De)

lx[[=1

where f(x) = Wpo(Wp_,0(...W,6(W,x)))

* Proof sketch (2-layers):



What does that lemma mean for#

Lemma:
Assume that all spectral norms for all weight matrices is less than |.Then, any model in #Z can be
replaced by one that has p,,..,(€) parameters, and leads to output error

sup |lf(x) = f(x)l, < O(De)

lx[[=1

where f(x) = Wpo(Wp_,0(...W,6(W,x)))

e Hence, wed have p,, (€/D) for an error of O(€)



Ok but that doesn't lead to finite H!?

*Next step: Replace each of the parameters of the compressed model with a guantized version.

Proposition:
When the spectral norm Is bounded by a constant ¢, all elements of the sparsified weight matrices
will also be bounded by a constant. Every weight can then be replaced by a quantized version of

tself such that ||Ag,qrsified — A;I?arswed\\ < €, as long as we use O(log(W/e)) bits of precision
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Ok but that doesn't lead to finite H!?

*Next step: Replace each of the parameters of the compressed model with a guantized version.

Proposition:
When the spectral norm Is bounded by a constant ¢, all elements of the sparsified weight matrices
will also be bounded by a constant. Every weight can then be replaced by a quantized version of

tself such that ||Ag,qrsified — A;I?arswed\\ < €, as long as we use O(log(W/e)) bits of precision

*Q: But how do we represent each of these networks:

A total parameters = sum of all sparsities*precision + positions of elements*precision
D

O ( Z (ns(Ai) - sr(Ai)/e2 + \/dz’+1 - ns(A)) - sr(Ai)/e))

=1
*Remember though we need €/D in the bound above. Assume that all widths are the same (keep th

D
second term for simplicity), we obtain O (22\/W- ns(A;) - Sr(Al-)>
¢ =1
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Very similar in spirit to

Stronger Generalization Bounds for Deep Nets via a Compression Approach

Sanjeev Arora' Rong Ge? Behnam Neyshabur® Yi Zhang '

Abstract

Deep nets generalize well despite having more
parameters than the number of training samples.
Recent works try to give an explanation using
PAC-Bayes and Margin-based analyses, but do
not as yet result in sample complexity bounds
better than naive parameter counting. The cur-
rent paper shows generalization bounds that are
orders of magnitude better in practice. These
rely upon new succinct reparametrizations of the
trained net — a compression that 1s explicit and
efficient. These yield generalization bounds via a
simple compression-based framework introduced
here. Our results also provide some theoretical
justification for widespread empirical success in
compressing deep nets. Analysis of correctness
of our compression relies upon some newly iden-
tified “noise stability”’properties of trained deep
nets, which are also experimentally verified. The
study of these properties and resulting general-
ization bounds are also extended to convolutional
nets, which had eluded earlier attempts on proving
generalization.

fueled research in this area by showing experimentally that
standard architectures using SGD and regularization can
still reach low training error on randomly labeled examples
(which clearly won’t generalize).

Clearly, deep nets trained on real-life data have some proper-
ties that reduce effective capacity, but identifying them has
proved difficult —at least in a quantitative way that yields
sample size upper bounds similar to classical analyses in
simpler models such as SVMs (Bartlett and Mendelson,
2002; Evgeniou et al., 2000; Smola et al., 1998) or matrix
factorization (Fazel et al., 2001; Srebro et al., 2005).

Qualitatively (Hochreiter and Schmidhuber, 1997; Hinton
and Van Camp, 1993) suggested that nets that generalize
well are flat minima in the optimization landscape of the
training loss. Recently Keskar et al. (2016) show using
experiments with different batch-sizes that sharp minima
do correlate with higher generalization error. A quanti-
tative version of “flatness” was suggested in (Langford
and Caruana, 2001): the net’s output is stable to noise
added to the net’s trainable parameters. Using PAC-Bayes
bound (McAllester, 1998; 1999) this noise stability yielded
generalization bounds for fully connected nets of depth 2.

The theory has been extended to multilayer fully connected
nets (Neyshabur et al., 2017b), although thus far yields sam-



Another way of thinking about this

e |f among the classifiers in #Z there is “large correlation”, we should not pay for it

* tquivalent to the idea that each event in the union bound can be very dependent to
other events (e.g., h; is bad may imply h, is very bad!)




Open: Ways to improve!

* What If training data are compressible! (some very old papers on this)
e Compression beyond sparsity/rank (info theoretic approaches!?)

* How far can we go with this?



Do the above explain
oeneralization?



Next time:
cseneralization though an algorithmic
lens



Next time

* [he gap of the true cost function from the one we have access to

€gen = | Rlg] — Rhg] |

o Question:When is it possible to bound €,,, by a small constant!

en

* [he answer must depend on:
) n, the sample size
2) # ,the hypothesis class (and its geometry)

3) &), the data distribution
'4) the optimization algorithm that outputs our classifier]




Conclusion

e Algorithm/Data agnostic generalization bounds are... tricky
e Can they explain the good performance of large models?

e Next: Generalization beyond “parameter counts” & complexity




