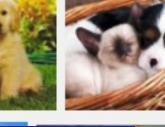
Concentration of the Empirical Risk

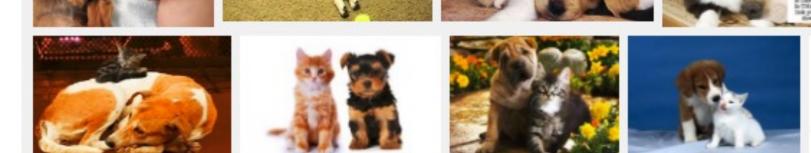
ECE826 Lecture 2:

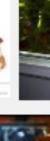
From This

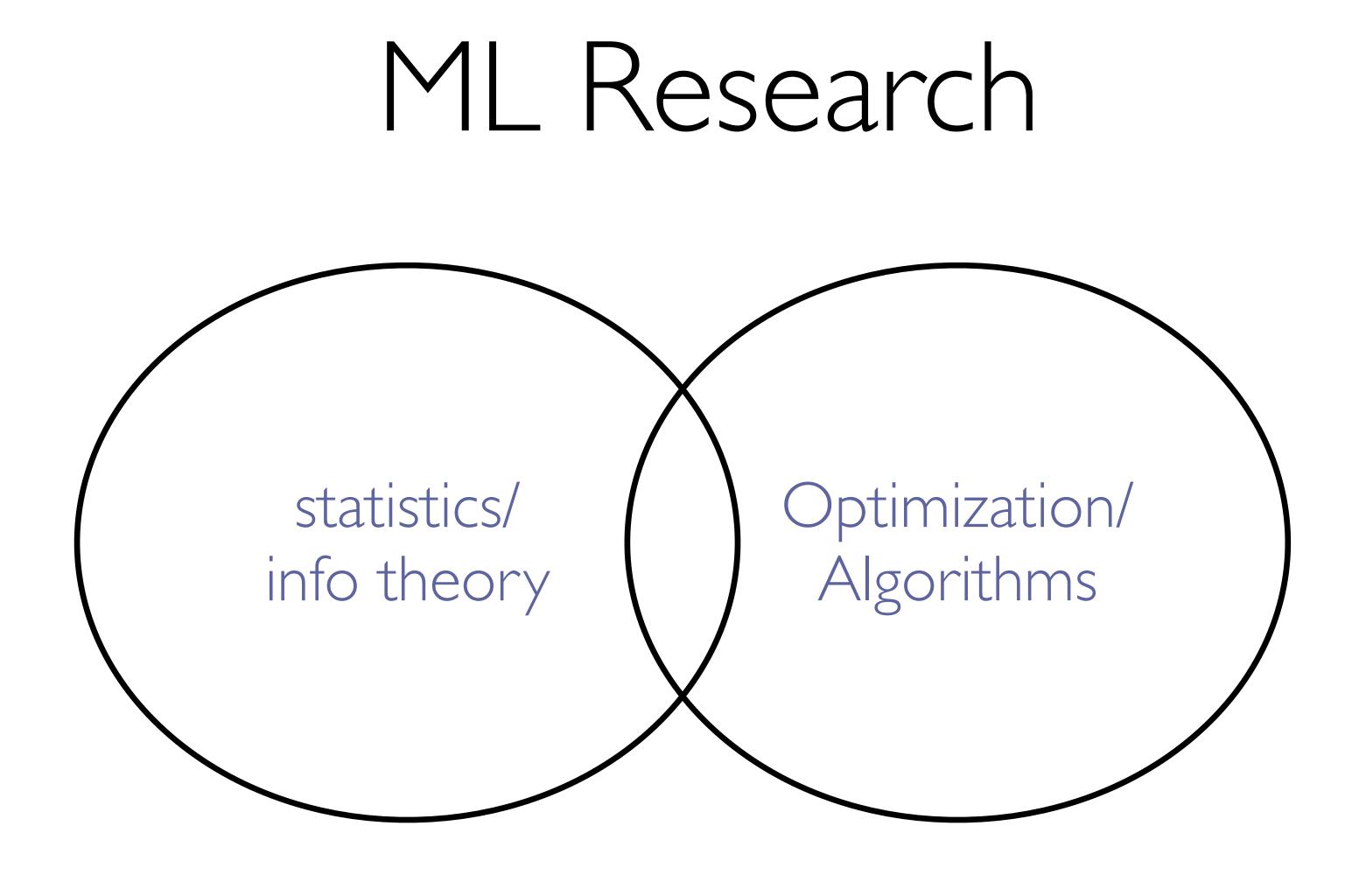
To this











statistics/ info theory

explains the "why's"

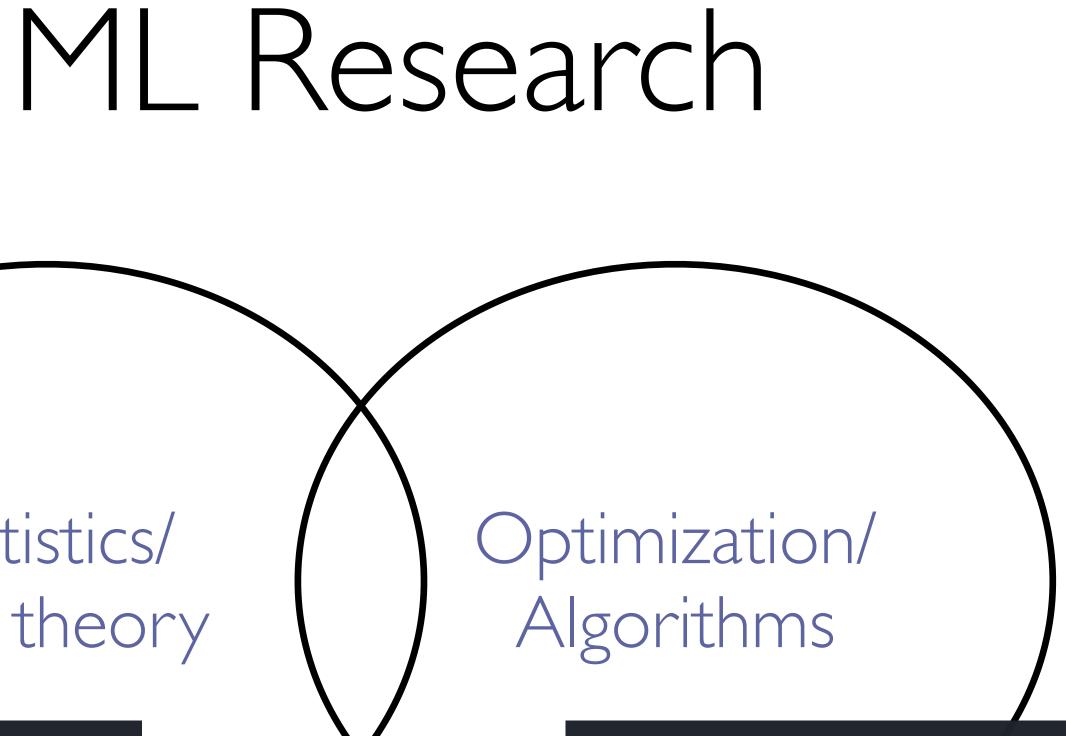
Optimization/ Algorithms

explains the "how's"

statistics/ info theory

explains the "why's"

Today: Why/when does ERM work



explains the "how's"

Contents

- How to show concentration for ERM
- Parameter count bounds
- VC dim and Rademacher Complexity
- Do these bounds explain generalization in modern ML?

Reminder • What we have: Labeled examples presented as (features, label)

neural network, decision tree, etc)

$(x_i, y_i) \sim \mathcal{D}$

• A fixed hypothesis class (aka type of predictor) \mathcal{H} (linear classifier, SVM,

Reminder • What we have: Labeled examples presented as (features, label)

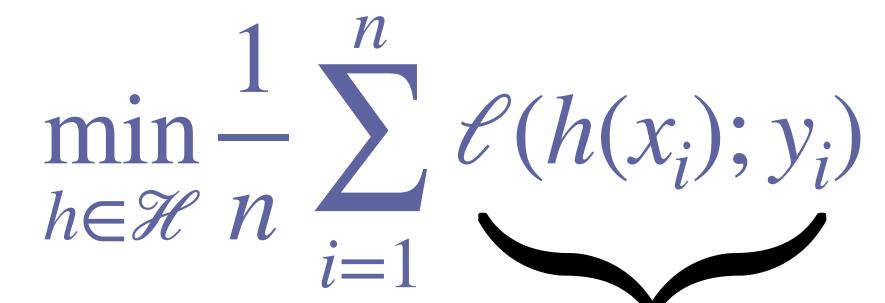
neural network, decision tree, etc)

• <u>Goal</u>: We want to find the best $h \in \mathcal{H}$ for a given distribution \mathcal{Y} and loss function. How? ERM

$(x_i, y_i) \sim \mathcal{D}$

• A fixed hypothesis class (aka type of predictor) \mathcal{H} (linear classifier, SVM,

Empirical Risk Minimization (ERM)



performance of model $h \in \mathcal{H}$ on data point x_i

Empirical Risk Minimization (ERM) $\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(h(x_i); y_i)$

performance of model $h \in \mathcal{H}$ on data point x_i

- <u>Sidenote</u>: Typically data set is split in three parts, [train|validation|test] • I) We use trainset to find models; 2) Performance evaluated on val set. 3) We pick one and report its performance on the test set.
- learning theory

Please google: cross validation/hold out set/check literature on intro to stat.

Main Question for today • When is the empirical risk a good estimator for the true risk

• i.e., when does the loss of the ERMinimizer concentrate

 $\mathbb{E}_{(x,y)\sim \mathcal{D}} \left| \ell(h(x); y) \right|$

Main Question for today • When is the empirical risk a good estimator for the true risk

• i.e., when does the loss of the ERMinimizer concentrate

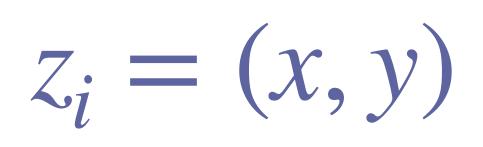
• Today: How does the choice of the model affect the "worst case" concentration of the loss of the empirical risk?

 $\mathbb{E}_{(x,y)\sim \mathcal{D}} \left| \ell(h(x); y) \right|$

Some Definitions • There is an unknown distribution \mathcal{D} over labeled examples from

 $\mathcal{X} \times \mathcal{Y}$ (i.e., feature x label space)

- We receive a "sample" data set of *n* i.i.d. examples $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$
- For notation simplicity we may sometime use



Some Definitions • Our goal is to find a hypothesis (classifier) $h_{\rm S}$ with small expected risk $R[h_S] = \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell(h_S(x); y) \right]$

• The loss measures the disagreement between predictions and reality

• The loss measures the disagreement between predictions and reality

• Since we can't directly measure $R[h_S]$ (our true cost function), we can consider optimizing its sample-average proxy, i.e., the empirical risk $\hat{R}[h_{S}] = \frac{1}{n} \sum_{i=1}^{n} \ell(h_{S}(x_{i}); y_{i})$ • Our hope is that $\hat{R}[h_S]$ is close to $R[h_S]$

Some Definitions • Our goal is to find a hypothesis (classifier) h_S with small expected risk $R[h_S] = \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell(h_S(x); y) \right]$

• The generalization gap • The gap of the true cost function from the one we have access to $\epsilon_{gen} = |R[h_S] - \hat{R}[h_S]|$

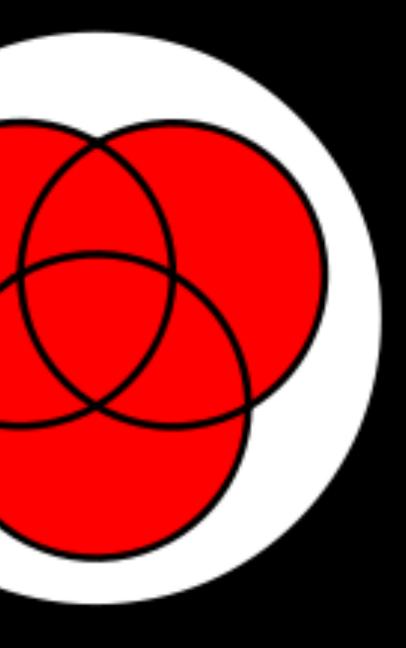
• <u>Question</u>: When is it possible to bound ϵ_{gen} by a small constant?

The generalization gap • The gap of the true cost function from the one we have access to $\epsilon_{gen} = |R[h_S] - \hat{R}[h_S]|$

- <u>Question</u>: When is it possible to bound ϵ_{gen} by a small constant?
- The answer must depend on: 1) *n*, the sample size 2) \mathcal{H} , the sample size 3) \mathcal{D} , the data distribution

[4) the optimization algorithm that outputs our classifier]

Vanilla Union Bound Results



A first step towards concentration

- <u>Assumption</u>: Let the loss be bounded
- $0 \leq \ell(h(x); y) \leq 1$ Lets use Hoeffing's Inequality (H.I.) to prove concentration

A first step towards concentration • <u>Assumption</u>: Let the loss be bounded $0 \leq \ell(h(x); y) \leq 1$

Then, for all $\epsilon \geq 0$

 $\Pr\left(\left|\hat{X}_n - \mathbb{E}\{\hat{X}_n\}\right| \ge$

- Lets use Hoeffing's Inequality (H.I.) to prove concentration
- Theorem: Let $X_1, \ldots, X_n \in \mathbb{R}$ be independent RVs, such that $0 \le X_i \le 1$. Also let, $\hat{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$.

$$\geq \epsilon \Big) \leq 2 \cdot e^{-2 \cdot n \cdot \epsilon^2}$$

A first step towards concentration • <u>Assumption</u>: Let the loss be bounded $0 \leq \ell(h(x); y) \leq 1$

Then, for all $\epsilon \geq 0$

$$\Pr\left(\left|\hat{X}_n - \mathbb{E}\{\hat{X}_n\}\right.\right.\right)$$

<u>Concentration</u>: a random variable is behaves almost like a constant

- Lets use Hoeffing's Inequality (H.I.) to prove concentration
- Theorem: Let $X_1, \ldots, X_n \in \mathbb{R}$ be independent RVs, such that $0 \le X_i \le 1$. Also let, $\hat{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$.

$$\geq \epsilon \Big) \leq 2 \cdot e^{-2 \cdot n \cdot \epsilon^2}$$

A first step towards concentration • <u>Assumption</u>: Let the loss be bounded $0 \leq \ell(h(x); y) \leq 1$ Lets use Hoeffing's Inequality (H.I.) to prove concentration

Then, for all $\epsilon \geq 0$ $\Pr\left(\left|\hat{X}_n - \mathbb{E}\{\hat{X}_n\}\right|\right)$

• The above is true irrespective of the distribution of the RVs

- Theorem: Let $X_1, \ldots, X_n \in \mathbb{R}$ be independent RVs, such that $0 \le X_i \le 1$. Also let, $\hat{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$.

$$\geq \epsilon \Big) \leq 2 \cdot e^{-2 \cdot n \cdot \epsilon^2}$$

Theorem: Let $X_1, \ldots, X_n \in \mathbb{R}$ be independent RVs, such that $0 \le X_i \le 1$. Also let, $\hat{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

Then, for all $\epsilon \geq 0$

probability $1 - \delta$?

 $\Pr\left(\left|\hat{X}_n - \mathbb{E}\{\hat{X}_n\}\right| \ge \epsilon\right) \le 2 \cdot e^{-2 \cdot n \cdot \epsilon^2}$

• Q: How many samples n do we need to guarantee $\hat{X}_n = \mathbb{E}\hat{X}_n \pm \epsilon$ with

Theorem: Let $X_1, \ldots, X_n \in \mathbb{R}$ be independent RVs, such that $0 \le X_i \le 1$. Also let, $\hat{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

Then, for all $\epsilon \geq 0$

 $\Pr\left(\left|\hat{X}_n - \mathbb{E}\{\hat{X}_n\}\right|\right)$

 $\Rightarrow n = --$

• Q: How many samples n do we need to guarantee $\hat{X}_n = \mathbb{E}\hat{X}_n \pm \epsilon$ with probability $1 - \delta$? $\delta = 2e^{-2n\epsilon^2}$

log (

$$\geq \epsilon \Big) \leq 2 \cdot e^{-2 \cdot n \cdot \epsilon^2}$$

$$\frac{1}{e^{2}} \Rightarrow \log\left(\frac{\delta}{2}\right) = -2ne^{2}$$
$$\frac{g\left(\frac{\delta}{2}\right)}{e^{2}} = C \cdot \frac{\log\left(\frac{1}{\delta}\right)}{e^{2}}$$

Theorem: Let $X_1, \ldots, X_n \in \mathbb{R}$ be independent RVs, such that $0 \le X_i \le 1$. Also let, $\hat{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

Then, for all $\epsilon \geq 0$

 $\Pr\left(\left|\hat{X}_n - \mathbb{E}\{\hat{X}_n\}\right|\right)$

• Q: How many samples n do we need to guarantee $\hat{X}_n = \mathbb{E}\hat{X}_n \pm \epsilon$ with probability $1 - \delta$? $\delta = 2e^{-2n\epsilon^2} =$

> $\log\left(\frac{\iota}{2}\right)$ $\Rightarrow n = \epsilon^2$

$$\geq \epsilon \Big) \leq 2 \cdot e^{-2 \cdot n \cdot \epsilon^2}$$

$$\Rightarrow \log\left(\frac{\delta}{2}\right) = -2n\epsilon^{2}$$
$$\frac{\delta}{2} = C \cdot \frac{\log\left(\frac{1}{\delta}\right)}{\epsilon^{2}}$$

Theorem: Let $X_1, \ldots, X_n \in \mathbb{R}$ be independent RVs, such that $0 \le X_i \le 1$. Also let, $\hat{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

Then, for all $\epsilon \geq 0$

probability $1 - \delta$?

Powerful statements like this tend to be very restrictive! H.I. is after all is oblivious to the distribution of RVs

Warning!

 $\Pr\left(\left|\hat{X}_n - \mathbb{E}\{\hat{X}_n\}\right| \ge \epsilon\right) \le 2 \cdot e^{-2 \cdot n \cdot \epsilon^2}$

• Q: How many samples n do we need to guarantee $X_n = \mathbb{E}X_n \pm \epsilon$ with

- training data (what?!)
- Let $X_i = \ell(h(x_i); y_i)$. (observe that X_i s are independent)

• Assume that our predictor h(;) is fixed, and does not depend on the

- training data (what?!)
- Let $X_i = \ell(h(x_i); y_i)$. (observe that X_i s are independent)

• Assume that our predictor h(;) is fixed, and does not depend on the

• Due to the iid assumption $\mathbb{E}X_i = \mathbb{E}_{x_i \sim \mathcal{D}}[\ell(h(x_i); y_i)] = \text{true risk of } h$

- training data (what?!)
- Let $X_i = \ell(h(x_i); y_i)$. (observe that X_i s are independent)

• Assume that our predictor h(;) is fixed, and does not depend on the

• Due to the iid assumption $\mathbb{E}X_i = \mathbb{E}_{x_i \sim \mathscr{D}}[\ell(h(x_i); y_i)] = \text{true risk of } h$ • Then, by H.I we have $\Pr\left(\epsilon_{gen}[h] \ge \epsilon\right) \le 2 \cdot e^{-2 \cdot n \cdot \epsilon^2}$

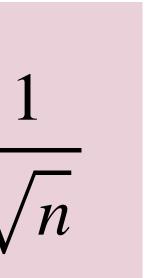
- training data (what?!)
- Let $X_i = \ell(h(x_i); y_i)$. (observe that X_i s are independent)

Corollary:

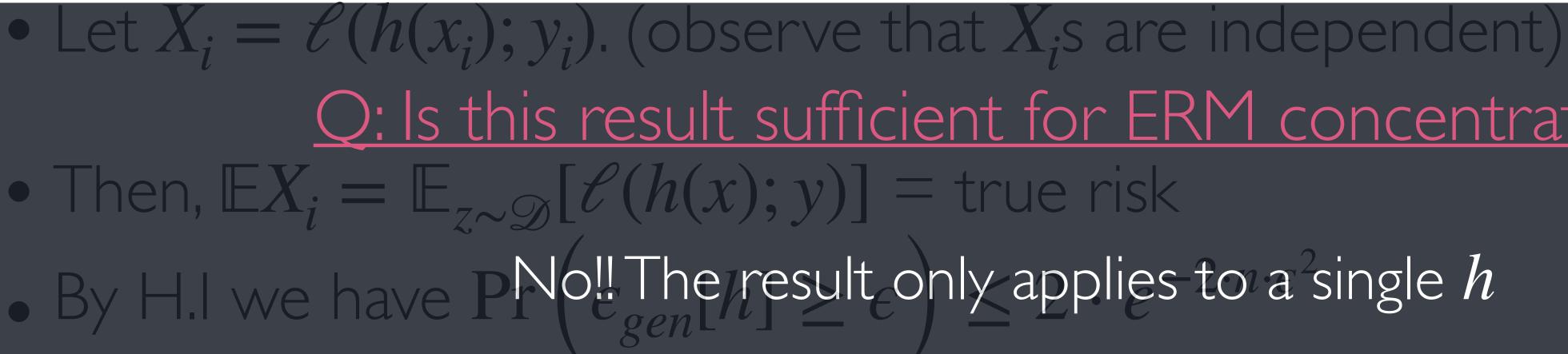
For any given (fixed) classifier h the empirical risk "converges" to the true risk with rate \sim

• Assume that our predictor h(;) is fixed, and does not depend on the

• Due to the iid assumption $\mathbb{E}X_i = \mathbb{E}_{x_i \sim \mathscr{D}}[\ell(h(x_i); y_i)] = \text{true risk of } h$ • Then, by H.I we have $\Pr\left(\epsilon_{gen}[h] \ge \epsilon\right) \le 2 \cdot e^{-2 \cdot n \cdot \epsilon^2}$



training data (what?!)

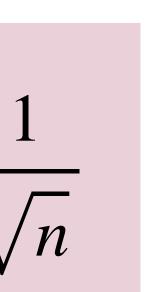


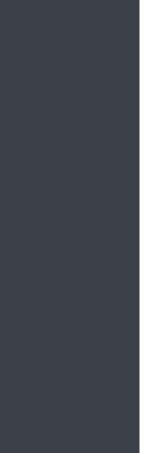
Corollary:

For any given (fixed) classifier h the empirical risk "converges" to the true risk with rate \sim

• Assume that our predictor h(;) is fixed, and does not depend on the

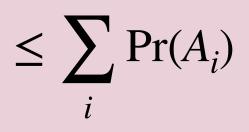
<u>Q: Is this result sufficient for ERM concentration?</u>





Say we are given a finite set of predictors \mathscr{H} (think of a large bag that contains a lot of models). Then, we can bound the "worst-case" generalization gap for this collection of models, using the union bound and H.I.

 $\Pr\left(\bigcup_{i}A_{i}\right) \leq \sum_{i}\Pr(A_{i})$



Say we are given a finite set of predictors \mathscr{H} (think of a large bag that contains a lot of models). Then, we can bound the "worst-case" generalization gap for this collection of models, using the union bound and H.I.

Let E_h be the event that h has generalization error more than $\epsilon_{gen}[h] = |R[h] - \hat{R}[h]| \ge \epsilon$.

$\Pr\left(\bigcup_{i} A_{i}\right) \leq \sum_{i} \Pr(A_{i})$

Say we are given a finite set of predictors \mathcal{H} (think of a large bag that contains a lot of models). Then, we can bound the "worst-case" generalization gap for this collection of models, using the union bound and H.I.

Let E_h be the event that h has generalization er Then,

$$\Pr\left(\max_{h\in\mathscr{H}}\epsilon_{gen}[h]\right) \le \Pr\left(\bigcup_{h\in\mathscr{H}}\left\{\epsilon_{gen}[h]\le\epsilon\right\}\right) \le |\mathscr{H}| \cdot \max_{h\in\mathscr{H}}\Pr\left(\epsilon_{gen}[h]\right)$$

 $\leq |\mathcal{H}| \cdot 2e^{-2n\epsilon^2}$

$$\Pr\left(\bigcup_{i} A_{i}\right) \leq \sum_{i} \Pr(A_{i})$$

alization error more than $\epsilon_{gen}[h] = |R[h] - \hat{R}[h]| \geq \epsilon$.

Say we are given a finite set of predictors \mathscr{H} (think of a large bag that contains a lot of models). Then, we can bound the "worst-case" generalization gap for this collection of models, using the union bound and H.I.

 $\Pr\left(\bigcup A_i\right)$

Let E_h be the event that h has generalization er Then,

$$\Pr\left(\max_{h\in\mathscr{H}}\epsilon_{gen}[h]\right) \leq \Pr\left(\bigcup_{h\in\mathscr{H}}\left\{e_{h\in\mathscr{H}}\right\}\right)$$
$$\leq |\mathscr{H}| \cdot 2e^{-2i}$$

$$\leq \sum_{i} \Pr(A_{i})$$
rror more than $\epsilon_{gen}[h] = |R[h] - \hat{R}[h]| \geq \epsilon$.
$$\epsilon_{gen}[h] \leq \epsilon \Big\} \Big) \leq |\mathcal{H}| \cdot \max_{h \in \mathcal{H}} \Pr\left(\epsilon_{gen}[h]\right)$$

 $n\epsilon^2$

• The above says. EVERYTHING in the \mathscr{H} bag generalizes well. How big can this bag be?

H.I on an entire family of classifiers

- That doesn't sound too bad!
- classifiers, NNs, etc?)

• HI + UB can handle families of up to size $|\mathcal{H}| = O(2^{n\epsilon^2 \cdot \delta})$

• What about hypothesis classes that actually "learn" stuff? (e.g., linear

Example 0: Linear Classifiers

- $x \in \mathbb{R}^d$.
- \mathcal{H} is the set of all hyper planes

• Let us consider the following binary classifier $y = sign(w^T x - b)$, where

Example 0: Linear Classifiers

- $x \in \mathbb{R}^d$.
- \mathcal{H} is the set of all hyper planes

• Vanilla U.B. can't help us much here

• Let us consider the following binary classifier $y = sign(w^T x - b)$, where

 $|\mathcal{H}| = \infty$

Example 0: Linear Classifiers

- $x \in \mathbb{R}^d$.
- \mathcal{H} is the set of all hyper planes

• Vanilla U.B. can't help us much here

we'll handle infinite families soon

• Let us consider the following binary classifier $y = sign(w^T x - b)$, where

$|\mathcal{H}| = \infty$

Example I: Linear Classifiers with finite precision

- Let us consider the following binary classifier $y = sign(w^T x b)$, where $x \in \mathbb{R}^d$.
- Let us also consider that w, b are floats (32 bits/variable)

$|\mathcal{H}| =$

Example I: Linear Classifiers with finite precision

- Let us consider the following binary classifier $y = sign(w^T x b)$, where $x \in \mathbb{R}^d$.
- Let us also consider that w, b are floats (32 bits/variable)

Corollary:

For the set of all linear classifiers we have $\epsilon_{gen} = |R[h_S] - \hat{R}[h_S]| = O(\sqrt{d/n})$, with probability $1 - \delta$, and any $0 < \delta < 1$

Example I: Linear Classifiers with finite precision

- Let us consider the following binary classifier $y = sign(w^T x b)$, where $x \in \mathbb{R}^d$.
- Let us also consider that w, b are floats (32 bits/variable)

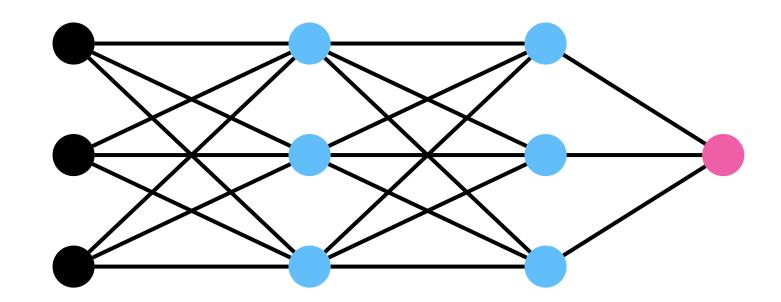
Corollary: For the set of all linear classifiers we have ϵ_{gen}

 $1-\delta$, and

When assuming floating point H.I. can be useful

$$k_{s} = |R[h_{S}] - \hat{R}[h_{S}]| = O\left(\sqrt{d/n}
ight)$$
, with probable any $0 < \delta < 1$

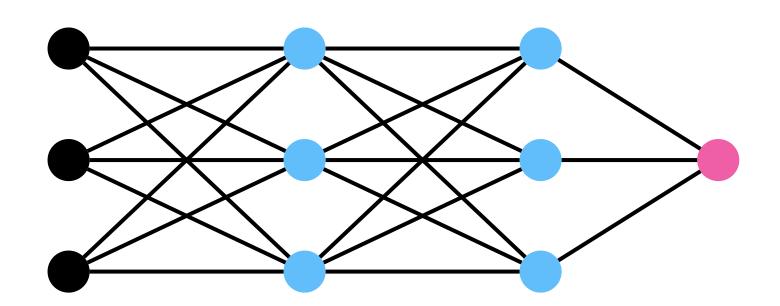
 $x \in \mathbb{R}^d$, where w is the set of all weights



y = sign(h(w; x))

• Let us consider the following binary classifier y = sign(h(w; x)), where

 $x \in \mathbb{R}^d$, where w is the set of all weights • assume they are floats (32 bit each)



y = sign(h(w; x))

• Let us consider the following binary classifier y = sign(h(w; x)), where

• Let us consider the following binary classifier y = sign(h(w; x)), where $x \in \mathbb{R}^d$, where w is the set of all weights • assume they are floats (32 bit each)

Corollary: $\epsilon_{gen} = |R[h_S] - \hat{R}[h_S]| = O(\sqrt{d/n})$, with probability $1 - \delta$, and any $0 < \delta < 1$

note that $d \cdot \log(32)$ is the size of the bit description of the model

For the set of all finite precision NN classifiers with d weights, we have

• Let us consider the following binary classifier y = sign(h(w; x)), where $x \in \mathbb{R}^d$, where w is the set of all weights • assume they are floats (32 bit each)

Corollary:

- For the set of all finite precision NN classifiers with d weights, we have $\epsilon_{gen} = |R[h_S] - \hat{R}[h_S]| = O(\sqrt{d/n})$, with probability $1 - \delta$, and any $0 < \delta < 1$
- if n > # params, then <u>all</u> FCs (accurate or not) generalize. Q: does this lead to non-vacuous bounds in practice?

Example 2.1: LeNet5 on ImageNet

Reminder: Corollary:

•LeNet5 has ~60K parameters •ImageNet has ~ 1.2 million images

*assumes imagenet samples are iid (they are not)

For any parametric model with d parameters of finite precision, we have $\epsilon_{gen} = |R[h_S] - \hat{R}[h_S]| = O(\sqrt{d/n})$, with probability $1 - \delta$, and any $0 < \delta < 1$

$d/n \approx 0.22$

Example 2.1: LeNet5 on ImageNet

Reminder: Corollary:

•LeNet5 has ~60K parameters •ImageNet has ~ 1.2 million images

*assumes imagenet samples are iid (they a Nice)

For any parametric model with d parameters of finite precision, we have $\epsilon_{gen} = |R[h_S] - \hat{R}[h_S]| = O(\sqrt{d/n})$, with probability $1 - \delta$, and any $0 < \delta < 1$

$d/n \approx 0.22$

Example 2.2: ResNet50 on ImageNet

- Reminder: Corollary:
- •ResNet 50 has \sim 23 million parameters •ImageNet has ~1.2 million images

$$\sqrt{d/n}$$

For any parametric model with d parameters of finite precision, we have $\epsilon_{gen} = |R[h_S] - \hat{R}[h_S]| = O(\sqrt{d/n})$, with probability $1 - \delta$, and any $0 < \delta < 1$

Example 2.2: ResNet50 on ImageNet

- Reminder: Corollary:
- •ResNet 50 has \sim 23 million parameters •ImageNet has ~1.2 million images

For any parametric model with d parameters of finite precision, we have $\epsilon_{gen} = |R[h_S] - \hat{R}[h_S]| = O(\sqrt{d/n})$, with probability $1 - \delta$, and any $0 < \delta < 1$

U.B. style results yield vacuous generalization error bounds

So far, only finite classes

• If Floats+parametric model => n > #params for generalization

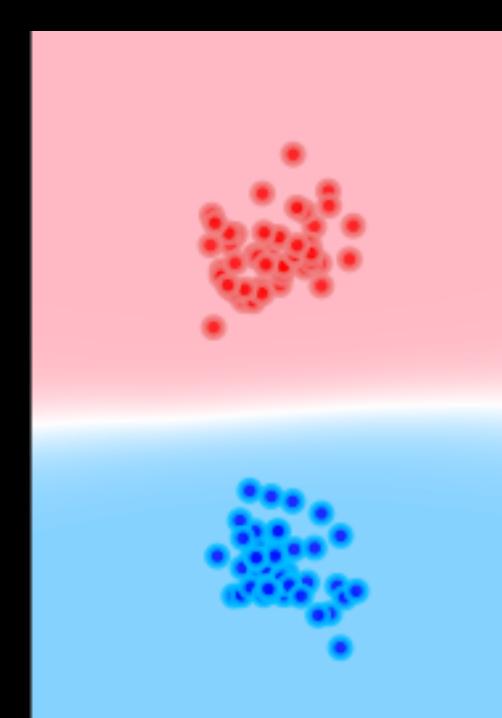
So far, only finite classes

• If Floats+parametric model => n > #params for generalization

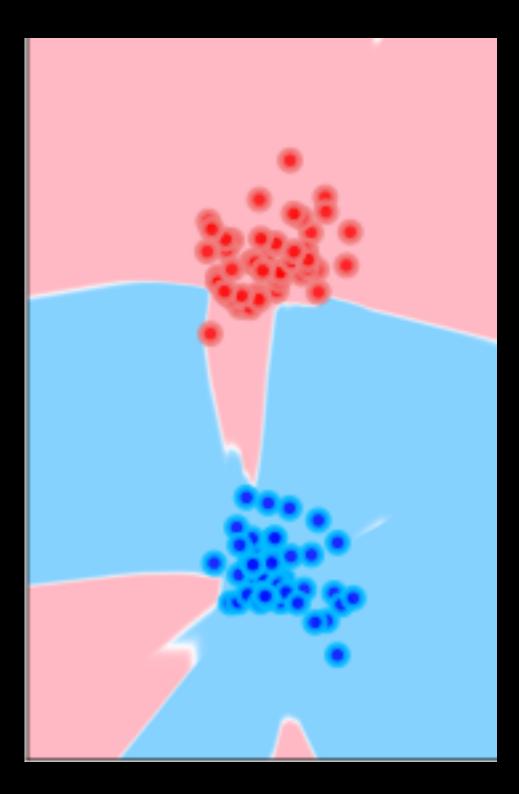
- Traditional theory for generalization bounds tries to handle infinite classes.
- VC-dimension, fat-shattering dimension, rademacher complexity, etc

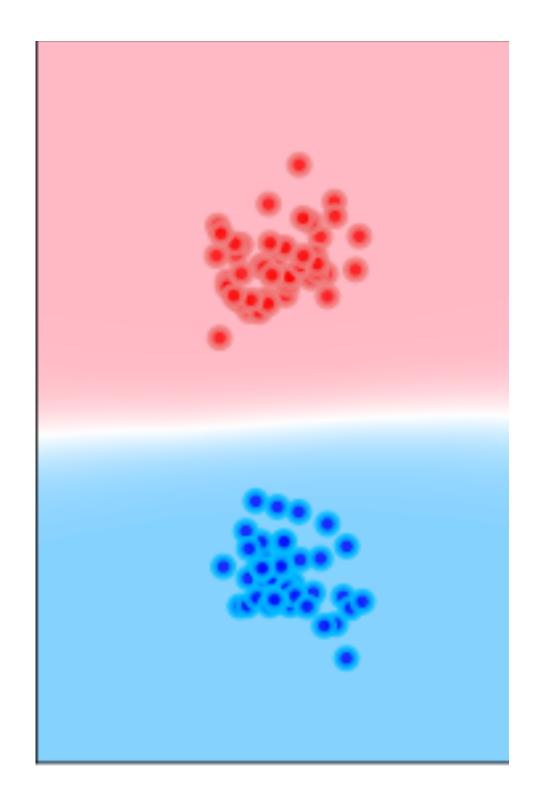
for real models/data?

• Can these more elaborate approaches result in interesting gen bounds

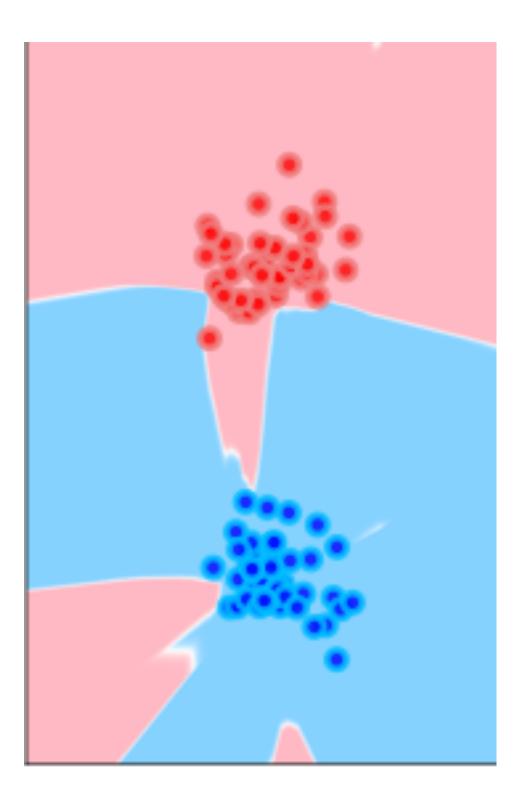


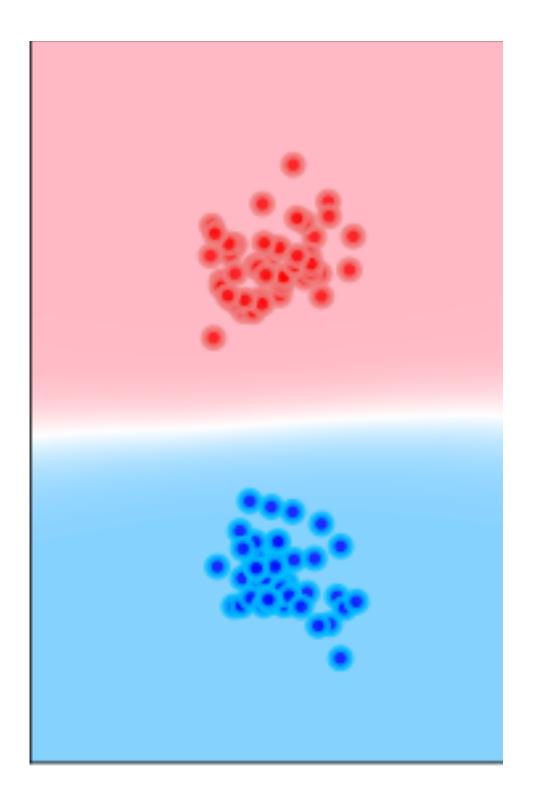
Measuring Complexity





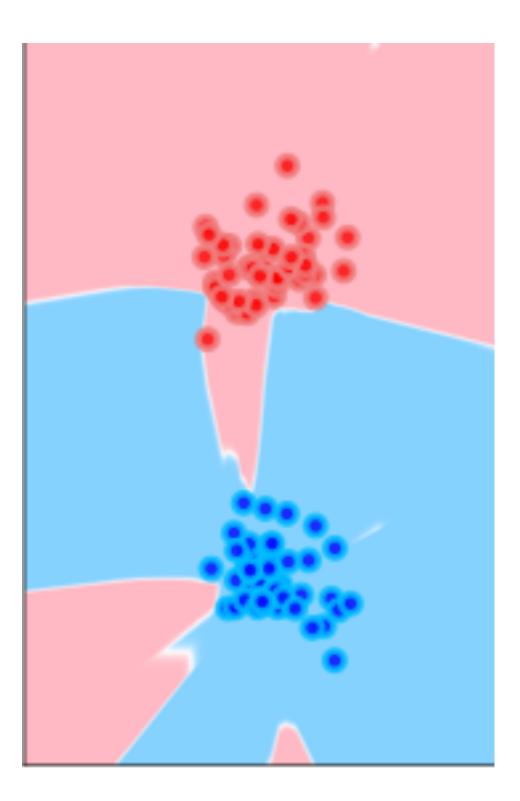
Which one is more complex?





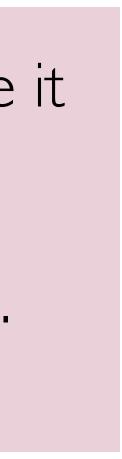
"complexity" not captured by "raw" bit complexity/param count of a model

Which one is more complex?



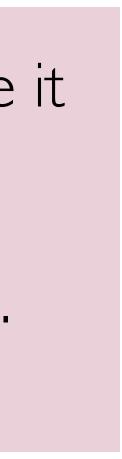
Bounding generalization via complexity measure

- General idea:
 - Bounding the expressiveness of a model => bounding the number of bits needed to describe it => bounding the generalization gap.
 - In other words, the less expressive/complex a class, the less surprises we'll have at test time.



Bounding generalization via complexity measure

- General idea:
 - Bounding the expressiveness of a model => bounding the number of bits needed to describe it => bounding the generalization gap.
 - In other words, the less expressive/complex a class, the less surprises we'll have at test time.
- Standard techniques: VC dimension and Rademacher Complexity
- Q: How do they work, what types of bounds do they imply?

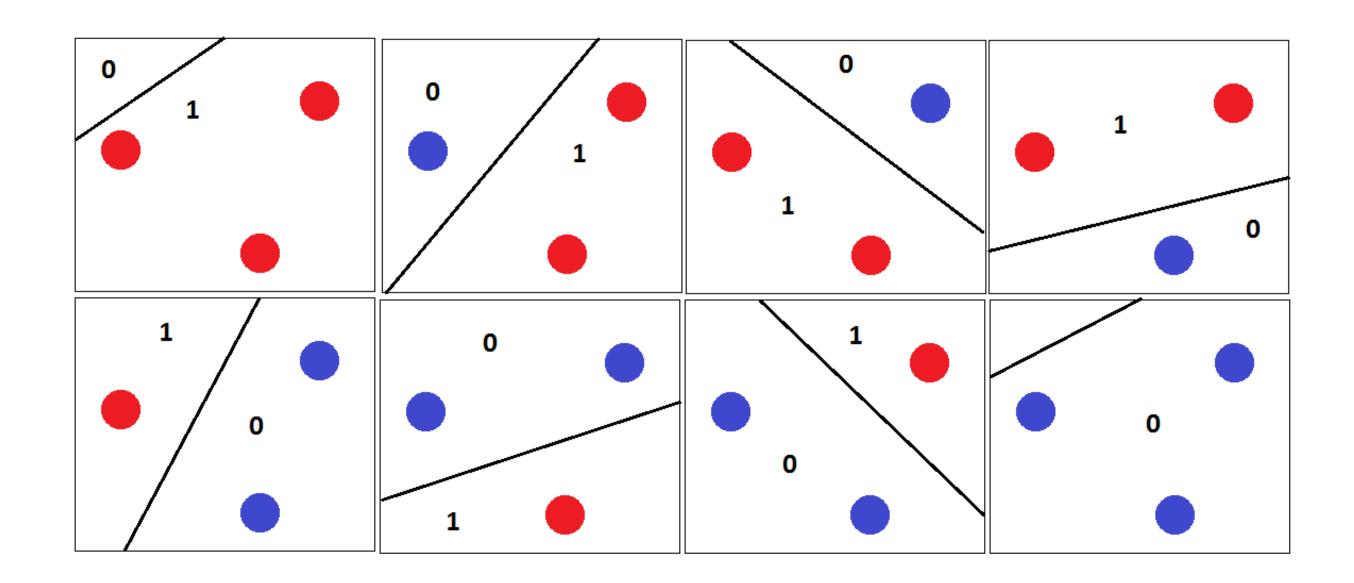


• VC dimension = measures expressiveness of a hypothesis class

Definition: shattered by a classifier $h \in \mathcal{H}$, i.e., for any labels y_1, \ldots, y_n of $S, h(x_i) = y_i$ for all $x_i \in S$

• VC dimension = measures expressiveness of a hypothesis class

Definition: shattered by a classifier $h \in \mathcal{H}$, i.e., for any labels y_1, \ldots, y_n of $S, h(x_i) = y_i$ for all $x_i \in S$



• VC dimension = measures expressiveness of a hypothesis class

Definition: shattered by a classifier $h \in \mathcal{H}$, i.e., for any labels y_1, \ldots, y_n of $S, h(x_i) = y_i$ for all $x_i \in S$

• E.g., largest set of images that a classifier can give any set of labels.

• VC dimension = measures expressiveness of a hypothesis class

Definition: shattered by a classifier $h \in \mathcal{H}$, i.e., for any labels y_1, \ldots, y_n of $S, h(x_i) = y_i$ for all $x_i \in S$

- E.g., largest set of images that a classifier can give any set of labels.
- Similar to memorization, but not quite.

• VC dimension = measures expressiveness of a hypothesis class

Definition: shattered by a classifier $h \in \mathcal{H}$, i.e., for any labels y_1, \ldots, y_n of $S, h(x_i) = y_i$ for all $x_i \in S$

- E.g., largest set of images that a classifier can give any set of labels.
- Similar to memorization, but not quite.
- Q: how does VC connect with generalization error?

• VC dimension can handle infinite classes Theorem:

- For any $\epsilon, \delta > 0$, suppose that $VCdim(\mathcal{H}) = d$, and we draw a sample S of size $n \ge \frac{C}{\epsilon^2} \left(d \log(1/\epsilon) + \log(1/\delta) \right)$
 - then with probability at least 1δ , we have that $\max_{h \in \mathcal{H}} \epsilon_{gen}[h] \leq \epsilon$

• VC dimension can handle infinite classes

Theorem:

We need again $n > VC(\mathcal{H})$, for good generalization Q: does this lead to non-vacuous bounds in practice?

For any $\epsilon, \delta > 0$, suppose that $VCdim(\mathcal{H}) = d$, and we draw a sample S of size $n \ge \frac{C}{\epsilon^2} \left(d \log(1/\epsilon) + \log(1/\delta) \right)$

then with probability at least $1 - \delta$, we have that $\max_{h \in \mathcal{H}} \epsilon_{gen}[h] \leq \epsilon$

• VC dimension = measure of expressiveness of a hypothesis class

Definition:

The VC-dimension of ${\mathscr H}$ is the largest number d such that there exist a set S of d samples that is shattered by a classifier $h \in \mathcal{H}$, i.e., if y_1, \ldots, y_n are the labels of S, then $h(x_i) = y_i$ for all $(x_i, y_i) \in S$

• VC dimension = measure of expressiveness of a hypothesis class

Definition:

Examples:

The VC-dimension of ${\mathscr H}$ is the largest number d such that there exist a set S of d samples that is shattered by a classifier $h \in \mathcal{H}$, i.e., if y_1, \ldots, y_n are the labels of S, then $h(x_i) = y_i$ for all $(x_i, y_i) \in S$

• VC dimension = measure of expressiveness of a hypothesis class

Definition:

Examples:

•
$$\mathscr{H} = \{h \mid h(x) = sign(w^T x - b)\}, VC(\mathscr{H}) = d + 1$$

• $\mathscr{H} =$ neural nets with thresholds and d parameters, $VC(\mathscr{H}) = O(d \log d)$
• $\mathscr{H} =$ ReLU NNs with d parameters and depth D $VC(\mathscr{H}) = O(dD \log d)$

on FP networks...

The VC-dimension of ${\mathscr H}$ is the largest number d such that there exist a set S of d samples that is shattered by a classifier $h \in \mathcal{H}$, i.e., if y_1, \ldots, y_n are the labels of S, then $h(x_i) = y_i$ for all $(x_i, y_i) \in S$

•For NNs it seems that VC dimension > #params. Worse generalization than parameter count

• VC dimension = measure of expressiveness of a hypothesis class

Definition:

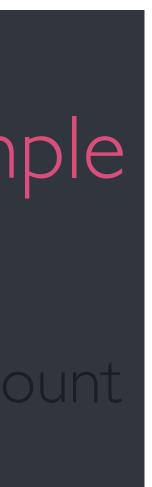
Examples:

• $\mathscr{H} = \{h \mid h(x) = sign(w^T x - b)\}, VC(\mathscr{H}) = d + 1$

• $\mathcal{H} =$ neural nets with thresholds and d parameters, $VC(\mathcal{H}) = O(d \log d)$ For finite Precision/VGadoesn't lead to anything better than the simple UB technique from earlier...

•For NNs it seems that VC dimension > #params. Worse generalization than parameter count on FP networks...

The VC-dimension of ${\mathscr H}$ is the largest number d such that there exist a set S of d samples that is shattered by a classifier $h \in \mathcal{H}$, i.e., if y_1, \ldots, y_n are the labels of S, then $h(x_i) = y_i$ for all $(x_i, y_i) \in S$



Conclusion

Concentration of the ERM implies generalization

Algorithm/Data agnostic generalization bounds are... tricky

• Next: Can we refine these bounds?