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Concentration of the Empirical Risk
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Today: Why/when does ERM work



Contents

• How to show concentration for ERM

• Parameter count bounds

• VC dim and Rademacher Complexity

• Do these bounds explain generalization in modern ML?



Reminder
• What we have: Labeled examples presented as (features, label) 

• A fixed hypothesis class (aka type of predictor)  (linear classifier, SVM, 
neural network, decision tree, etc)

ℋ

(xi, yi) ∼ 𝒟



Reminder
• What we have: Labeled examples presented as (features, label) 

• A fixed hypothesis class (aka type of predictor)  (linear classifier, SVM, 
neural network, decision tree, etc)

• Goal: We want to find the best  for a given distribution  and 
loss function. How? ERM

ℋ

h ∈ ℋ 𝒟

(xi, yi) ∼ 𝒟



Empirical Risk Minimization (ERM)
min
h∈ℋ

1
n

n

∑
i=1

ℓ(h(xi); yi)

performance of model   on data point h ∈ ℋ xi

|{z}
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• Sidenote: Typically data set is split in three parts, [train|validation|test]
• 1) We use trainset to find models; 2) Performance evaluated on val set.  

3) We pick one and report its performance on the test set.

• Please google: cross validation/hold out set/check literature on intro to stat. 
learning theory



Main Question for today
• When is the empirical risk a good estimator for the true risk

• i.e., when does the loss of the ERMinimizer concentrate

𝔼(x,y)∼𝒟 [ℓ(h(x); y)]



Main Question for today
• When is the empirical risk a good estimator for the true risk

• i.e., when does the loss of the ERMinimizer concentrate

• Today: How does the choice of the model affect the “worst case” 
concentration of the loss of the empirical risk?

𝔼(x,y)∼𝒟 [ℓ(h(x); y)]



Some Definitions
• There is an unknown distribution  over labeled examples from 

 (i.e., feature x label space)

• We receive a “sample” data set of  i.i.d. examples

• For notation simplicity we may sometime use

𝒟
𝒳 × 𝒴

n

S = {(x1, y1), …, (xn, yn)}

zi = (x, y)



Some Definitions
• Our goal is to find a hypothesis (classifier)  with small expected risk

• The loss measures the disagreement between predictions and reality

hS

R[hS] = 𝔼(x,y)∼𝒟 [ℓ(hS(x); y)]



Some Definitions
• Our goal is to find a hypothesis (classifier)  with small expected risk

• The loss measures the disagreement between predictions and reality

• Since we can’t directly measure  (our true cost function), we can 
consider optimizing its sample-average proxy, i.e., the empirical risk

• Our hope is that  is close to 

hS

R[hS]

R̂[hS] R[hS]

R[hS] = 𝔼(x,y)∼𝒟 [ℓ(hS(x); y)]

R̂[hS] =
1
n

n

∑
i=1

ℓ(hS(xi); yi)



The generalization gap
• The gap of the true cost function from the one we have access to

• Question: When is it possible to bound  by a small constant?ϵgen

ϵgen = |R[hS] − R̂[hS] |



The generalization gap
• The gap of the true cost function from the one we have access to

• Question: When is it possible to bound  by a small constant?

• The answer must depend on:  
        1) , the sample size 
        2) , the sample size 
        3) , the data distribution

          [4) the optimization algorithm that outputs our classifier]

ϵgen

n
ℋ
𝒟

ϵgen = |R[hS] − R̂[hS] |



Vanilla Union Bound Results



• Assumption: Let the loss be bounded

• Lets use Hoeffing’s Inequality (H.I.) to prove concentration

A first step towards concentration

0 ≤ ℓ(h(x); y) ≤ 1
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• Assumption: Let the loss be bounded

• Lets use Hoeffing’s Inequality (H.I.) to prove concentration

• The above is true irrespective of the distribution of the RVs

Theorem: Let  be independent RVs, such that . Also let, . 
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A first step towards concentration

Concentration: a random variable is behaves almost like a constant

0 ≤ ℓ(h(x); y) ≤ 1



• Assumption: Let the loss be bounded

• Lets use Hoeffing’s Inequality (H.I.) to prove concentration

• The above is true irrespective of the distribution of the RVs
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0 ≤ ℓ(h(x); y) ≤ 1



Simple application of H.I 

• Q: How many samples  do we need to guarantee  with 
probability ?
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1 − δ
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Simple application of H.I 

• Q: How many samples  do we need to guarantee  with 
probability ?

Theorem: Let  be independent RVs, such that . Also let, . 

Then, for all 

X1, …, Xn ∈ ℝ 0 ≤ Xi ≤ 1 X̂n =
1
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log ( 1
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“Error” scales like 1/n



Simple application of H.I 

• Q: How many samples  do we need to guarantee  with 
probability ?

Theorem: Let  be independent RVs, such that . Also let, . 

Then, for all 

X1, …, Xn ∈ ℝ 0 ≤ Xi ≤ 1 X̂n =
1
n

n

∑
i=1

Xi

ϵ ≥ 0
Pr ( X̂n − 𝔼{X̂n} ≥ ϵ) ≤ 2 ⋅ e−2⋅n⋅ϵ2

n X̂n = 𝔼X̂n ± ϵ
1 − δ

δ = 2e−2nϵ2 ⇒ log ( δ
2 ) = − 2nϵ2

⇒ n = −
log ( δ

2 )
ϵ2

= C ⋅
log ( 1

δ )
ϵ2

Warning!

Powerful statements like this tend to be very restrictive! 
H.I. is after all is oblivious to the distribution of RVs



Let’s try H.I on the empirical risk
• Assume that our predictor  is fixed, and does not depend on the 

training data (what?!)

• Let . (observe that s are independent)

h(; )

Xi = ℓ(h(xi); yi) Xi
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• Assume that our predictor  is fixed, and does not depend on the 
training data (what?!)

• Let . (observe that s are independent)

• Due to the iid assumption  = true risk of 

• Then, by H.I we have 

h(; )

Xi = ℓ(h(xi); yi) Xi

𝔼Xi = 𝔼xi∼𝒟[ℓ(h(xi); yi)] h
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Corollary: 
For any given (fixed) classifier  the empirical risk “converges” to the true risk with rate h ∼

1

n

Let’s try H.I on the empirical risk



• Assume that our predictor  is fixed, and does not depend on the 
training data (what?!)

• Let . (observe that s are independent)

• Then,  = true risk

• By H.I we have 

h(; )

Xi = ℓ(h(xi); yi) Xi

𝔼Xi = 𝔼z∼𝒟[ℓ(h(x); y)]
Pr (ϵgen[h] ≥ ϵ) ≤ 2 ⋅ e−2⋅n⋅ϵ2

Corollary: 
For any given (fixed) classifier  the empirical risk “converges” to the true risk with rate h ∼

1

n

Q: Is this result sufficient for ERM concentration?

No!! The result only applies to a single h

Let’s try H.I on the empirical risk
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• What we need: Results for at least a family  of predictorsℋ
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H.I on an entire family of classifiers
• What we need: Results for at least a family  of predictorsℋ

Say we are given a finite set of predictors  (think of a large bag that contains a lot of models). 
Then, we can bound the “worst-case” generalization gap for this collection of models, using the 
union bound and H.I.

Let  be the event that  has generalization error more than .
Then, 

ℋ

Eh h ϵgen[h] = |R[h] − R̂[h] | ≥ ϵ

Pr (⋃
i

Ai) ≤ ∑
i

Pr(Ai)

Pr (max
h∈ℋ
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h∈ℋ

{ϵgen[h] ≤ ϵ}) ≤ |ℋ | ⋅ max
h∈ℋ

Pr (ϵgen[h])
≤ |ℋ | ⋅ 2e−2nϵ2



H.I on an entire family of classifiers
• What we need: Results for at least a family  of predictors

• The above says. EVERYTHING in the  bag generalizes well. How big can this bag be?

ℋ

ℋ

Say we are given a finite set of predictors  (think of a large bag that contains a lot of models). 
Then, we can bound the “worst-case” generalization gap for this collection of models, using the 
union bound and H.I.

Let  be the event that  has generalization error more than .
Then, 
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Eh h ϵgen[h] = |R[h] − R̂[h] | ≥ ϵ

Pr (⋃
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Ai) ≤ ∑
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Pr (max
h∈ℋ

ϵgen[h]) ≤ Pr ( ⋃
h∈ℋ

{ϵgen[h] ≤ ϵ}) ≤ |ℋ | ⋅ max
h∈ℋ

Pr (ϵgen[h])
≤ |ℋ | ⋅ 2e−2nϵ2



H.I on an entire family of classifiers

• HI + UB can handle families of up to size  

• That doesn’t sound too bad!

• What about hypothesis classes that actually “learn” stuff? (e.g., linear 
classifiers, NNs, etc?)

|ℋ | = O (2nϵ2⋅δ)



Example 0: Linear Classifiers
• Let us consider the following binary classifier  , where  

. 
•  is the set of all hyper planes

y = sign(wTx − b)
x ∈ ℝd

ℋ

|ℋ | =
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• Let us consider the following binary classifier  , where  
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•  is the set of all hyper planes
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x ∈ ℝd
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Example 0: Linear Classifiers
• Let us consider the following binary classifier  , where  

. 
•  is the set of all hyper planes

•  Vanilla U.B. can’t help us much here

y = sign(wTx − b)
x ∈ ℝd

ℋ

|ℋ | = ∞

we’ll handle infinite families soon
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• Let us consider the following binary classifier  , where  
. 

• Let us also consider that  are floats (32 bits/variable)

y = sign(wTx − b)
x ∈ ℝd

w, b

|ℋ | =



Example 1: Linear Classifiers with finite precision

• Let us consider the following binary classifier  , where  
. 

• Let us also consider that  are floats (32 bits/variable)

y = sign(wTx − b)
x ∈ ℝd

w, b
Corollary: 
For the set of all linear classifiers we have , with probability 

, and any 
ϵgen = |R[hS] − R̂[hS] | = O ( d/n)

1 − δ 0 < δ < 1



Example 1: Linear Classifiers with finite precision

• Let us consider the following binary classifier  , where  
. 

• Let us also consider that  are floats (32 bits/variable)

y = sign(wTx − b)
x ∈ ℝd

w, b

When assuming floating point H.I. can be useful

Corollary: 
For the set of all linear classifiers we have , with probability 

, and any 
ϵgen = |R[hS] − R̂[hS] | = O ( d/n)

1 − δ 0 < δ < 1



Example 2: Fully Connected ReLU network with floats

• Let us consider the following binary classifier  , where  
, where  is the set of all weights

y = sign(h(w; x))
x ∈ ℝd w

y = sign(h(w; x))



Example 2: Fully Connected ReLU network with floats

• Let us consider the following binary classifier  , where  
, where  is the set of all weights

• assume they are floats (32 bit each)

y = sign(h(w; x))
x ∈ ℝd w

|ℋ | =

y = sign(h(w; x))



Example 2: Fully Connected ReLU network with floats

• Let us consider the following binary classifier  , where  
, where  is the set of all weights

• assume they are floats (32 bit each)

y = sign(h(w; x))
x ∈ ℝd w

Corollary: 
For the set of all finite precision NN classifiers with  weights, we have 

, with probability , and any 
d

ϵgen = |R[hS] − R̂[hS] | = O ( d/n) 1 − δ 0 < δ < 1

note that  is the size of the bit description of the modeld ⋅ log(32)



Example 2: Fully Connected ReLU network with floats

• Let us consider the following binary classifier  , where  
, where  is the set of all weights

• assume they are floats (32 bit each)

y = sign(h(w; x))
x ∈ ℝd w

Corollary: 
For the set of all finite precision NN classifiers with  weights, we have 

, with probability , and any 
d

ϵgen = |R[hS] − R̂[hS] | = O ( d/n) 1 − δ 0 < δ < 1

if n > #params, then all FCs (accurate or not) generalize. 

Q: does this lead to non-vacuous bounds in practice?



Example 2.1: LeNet5 on ImageNet
Reminder:

•LeNet5 has ~60K parameters
•ImageNet has ~1.2 million images

*assumes imagenet samples are iid (they are not)

Corollary: 
For any parametric model with  parameters of finite precision, we have 

, with probability , and any 
d

ϵgen = |R[hS] − R̂[hS] | = O ( d/n) 1 − δ 0 < δ < 1

d/n ≈ 0.22



Example 2.1: LeNet5 on ImageNet
Reminder:

•LeNet5 has ~60K parameters
•ImageNet has ~1.2 million images

*assumes imagenet samples are iid (they are not)

Corollary: 
For any parametric model with  parameters of finite precision, we have 

, with probability , and any 
d

ϵgen = |R[hS] − R̂[hS] | = O ( d/n) 1 − δ 0 < δ < 1

d/n ≈ 0.22
Nice!



Example 2.2: ResNet50 on ImageNet
Reminder:

•ResNet 50 has ~23 million parameters
•ImageNet has ~1.2 million images

Corollary: 
For any parametric model with  parameters of finite precision, we have 

, with probability , and any 
d

ϵgen = |R[hS] − R̂[hS] | = O ( d/n) 1 − δ 0 < δ < 1

d/n > > 1



Example 2.2: ResNet50 on ImageNet
Reminder:

•ResNet 50 has ~23 million parameters
•ImageNet has ~1.2 million images

Corollary: 
For any parametric model with  parameters of finite precision, we have 

, with probability , and any 
d

ϵgen = |R[hS] − R̂[hS] | = O ( d/n) 1 − δ 0 < δ < 1

d/n > > 1U.B. style results yield vacuous generalization error bounds



So far, only finite classes
• If Floats+parametric model => n > #params for generalization



So far, only finite classes
• If Floats+parametric model => n > #params for generalization

• Traditional theory for generalization bounds tries to handle infinite 
classes.

• VC-dimension, fat-shattering dimension, rademacher complexity, etc

• Can these more elaborate approaches result in interesting gen bounds 
for real models/data?



Measuring Complexity



Which one is more complex?



Which one is more complex?

“complexity” not captured by “raw” bit complexity/param count of a model



Bounding generalization via complexity measure

• General idea:

 

Bounding the expressiveness of a model => bounding the number of bits needed to describe it
 => bounding the generalization gap. 

In other words, the less expressive/complex a class, the less surprises we’ll have at test time.



Bounding generalization via complexity measure

• General idea:

 
• Standard techniques: VC dimension and Rademacher Complexity

• Q: How do they work, what types of bounds do they imply?

Bounding the expressiveness of a model => bounding the number of bits needed to describe it
 => bounding the generalization gap. 

In other words, the less expressive/complex a class, the less surprises we’ll have at test time.



VC dimension
• VC dimension = measures expressiveness of a hypothesis class

 

Definition:
The VC-dimension of  is the largest number  such that there exist a set  of  samples that is 
shattered by a classifier , i.e., for any labels  of ,  for all 

ℋ d S d
h ∈ ℋ y1, …, yn S h(xi) = yi xi ∈ S



VC dimension
• VC dimension = measures expressiveness of a hypothesis class

 

Definition:
The VC-dimension of  is the largest number  such that there exist a set  of  samples that is 
shattered by a classifier , i.e., for any labels  of ,  for all 

ℋ d S d
h ∈ ℋ y1, …, yn S h(xi) = yi xi ∈ S



VC dimension
• VC dimension = measures expressiveness of a hypothesis class

 
• E.g., largest set of images that a classifier can give any set of labels.
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VC dimension
• VC dimension = measures expressiveness of a hypothesis class

 
• E.g., largest set of images that a classifier can give any set of labels.

• Similar to memorization, but not quite.

Definition:
The VC-dimension of  is the largest number  such that there exist a set  of  samples that is 
shattered by a classifier , i.e., for any labels  of ,  for all 
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VC dimension
• VC dimension = measures expressiveness of a hypothesis class

 
• E.g., largest set of images that a classifier can give any set of labels.

• Similar to memorization, but not quite.

• Q: how does VC connect with generalization error?

Definition:
The VC-dimension of  is the largest number  such that there exist a set  of  samples that is 
shattered by a classifier , i.e., for any labels  of ,  for all 

ℋ d S d
h ∈ ℋ y1, …, yn S h(xi) = yi xi ∈ S



VC dimension
• VC dimension can handle infinite classes
Theorem:

For any , suppose that , and we draw a sample  of size

then with probability at least , we have that 

ϵ, δ > 0 VCdim(ℋ) = d S
n ≥

C
ϵ2 (d log(1/ϵ) + log(1/δ)

1 − δ max
h∈ℋ

ϵgen[h] ≤ ϵ



VC dimension
• VC dimension can handle infinite classes
Theorem:

For any , suppose that , and we draw a sample  of size

then with probability at least , we have that 

ϵ, δ > 0 VCdim(ℋ) = d S
n ≥

C
ϵ2 (d log(1/ϵ) + log(1/δ)

1 − δ max
h∈ℋ

ϵgen[h] ≤ ϵ

We need again , for good generalization

Q: does this lead to non-vacuous bounds in practice?

n > VC(ℋ)



VC dimension
• VC dimension = measure of expressiveness of a hypothesis class

Definition:
The VC-dimension of  is the largest number  such that there exist a set  of  samples that is 
shattered by a classifier , i.e., if  are the labels of , then  for all 

ℋ d S d
h ∈ ℋ y1, …, yn S h(xi) = yi (xi, yi) ∈ S
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Definition:
The VC-dimension of  is the largest number  such that there exist a set  of  samples that is 
shattered by a classifier , i.e., if  are the labels of , then  for all 

ℋ d S d
h ∈ ℋ y1, …, yn S h(xi) = yi (xi, yi) ∈ S

For finite Precision VC doesn’t lead to anything better than the simple 
UB technique from earlier…



Conclusion

• Concentration of the ERM implies generalization

• Algorithm/Data agnostic generalization bounds are… tricky

• Next: Can we refine these bounds?


