How efficient and expressive are
Binary Neural Networks
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Binary Neural Networks

e A |ot of recent work since 2016 ~
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e Several benefits:
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* [ypically suffer from accuracy loss
* | earning algorithms are a bit too heuristic

e [heoretical results very very limited (expressivity/algorithmic aspects)




Multiplication => XNOR + brtcount

A B XNOR(A,B)
0 (-1) 0 (-1) [ (+1)
0 (-1) | (+1) 0 (-1)

[ (+1) 0 (-1) 0 (-1)
| (+1) | (+1) | (+1)

2 - popcount ( XNOR(-1,—-1); XNOR(1,—-1); XNOR(1,1))-3



Some ways to
Binarize Neural Nets
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XNOR-Net

Network Variations Operations = Memory Computation | Accuracy on
used in Saving Saving ImageNet
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* Binary-Weight-Nets: conv filters are only +1/-1
o XNOR-Nets: input AND filter 1s binary



How to binarize a hetwork!

Goal:

Find the best binary network that approximates original

* Wehopethat W*X ~a-B*X

e Forsome =1 matrix B



How to binarize a network!

 Method: for a given layer, and a given matrix, |, the best binary
matrix B is given by

min HW*X—aB*XH%E min HW—aBH%
a€R,B; €{—-1,1} a€R,B; €{—-1,1}

[Rastegari, Ordonez, Redmon, Farhadi, 201 6]



How to binarize a network!

min |W — aBHIZ;
_ - 2 T 2 2
= min |W||%z — 2a - trace{ W' B} + a~||B||%



How to binarize a network!

min |W — aBHIZ;
_ - 2 T 2 2
= min |W||%z — 2a - trace{ W' B} + a~||B||%
a€R,B; €{—-1,1}]
= min —2a - trace{W!B} + 052HBH12¢



How to binarize a network!

min |W — aBH%
_ : 2 T 2 2
= min |W||%z — 20 - trace{ W' B} + a~||B||%
= min —2a - trace{W!B} + 052HBH12V

= min ({ min — 2a - trace{ W/B} } +a’- N)
aceR B, e{-1,1}



How to binarize a network!

min |W — aBHIZ:
_ : 2 T 2 2
= min |W||% — 20 - trace{ W' B} + a~||B||%
= min —2a - trace{W!B} + 062”3”1%

= min({ min —2a-trace{WTB}} +a2-N)
aceR B, e{-1,1}

= min (—2(1 { max vec(W)Tvec(B)} + a’- N)
acR B, €{-1,1}



How to binarize a network!

min |W — aBHIZ:
_ : 2 T 2 2
= min |W||% — 20 - trace{ W' B} + a~||B||%
= min —2a - trace{W!B} + 062”3”1%

= min({ min —2a-trace{WTB}} +a2-N)
aceR B, e{-1,1}

= min (—2(1 { max vec(W)Tvec(B)} + a’- N)
acR B, €{-1,1}

= min (—Za { max WTb} + a? - N)
acR be{-1,1}"



Complexity of binarization

btimal solution of  min |W — ocBH}zD S

[Rastegari, Ordonez, Redmon, Farhadi, 201 6]



Complexity of binarization

. Optimal solution of min |W — ocBH}zD S
a€R,B; €{—-1,1}
| trace(W' B*)
B* = Slgﬂ(W) and a™ = T

[Rastegari, Ordonez, Redmon, Farhadi, 201 6]



Complexity of binarization

. Optimal solution of min |W — ocBH}zD S
a€R,B; €{—-1,1}
| trace(W' B*)
B* = Slgﬂ(W) and a™ = T

* Computable in linear time in number of weights.

[Rastegari, Ordonez, Redmon, Farhadi, 201 6]



What It you want to Binarize Inputs too!

e We would hopethat W* X ~ a- B * Z where

min HW*X—C{B*ZH%
a€R,B,; .7, €{—-1,1}

e Similar, but a bit more involved solution for this too



Backprop for BVV-Net

How do we train!?

-orward pass: binarize weights, and compute 0ss

Backward pass: replace grad of Vsign(w) function with wl,
and follow chain rule

Parameter update: use floats

XNOR-net backprop a little trickier but similar



XNOR-Net: Efficiency Experiments

Speedup by varying channel size Speedup by varying filter size
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Fig.4: This figure shows the efficiency of binary convolutions in terms of memory(a) and
computation(b-c). (a) 1s contrasting the required memory for binary and double precision weights
in three different architectures(AlexNet, ResNet-18 and VGG-19). (b,c) Show speedup gained by
binary convolution under (b)-different number of channels and (c)-different filter size



XNOR-Net: Accuracy Experiments
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XNOR-Net: Accuracy Experiments

Classification Accuracy(%)
Binary-Weight Binary-Input-Binary-Weight||Full-Precision
BWN I BC[11] ||XNOR-Net| BNN[II] AlexNet| ! ]
Top-1|Top-5|Top-1|Top-5|/Top-1|Top-5|Top-1| Top-5 ||Top-1| Top-5
568 | 79.4 | 354|610 44.2 |69.2 | 279 | 5042 | 56.6 | 80.2

Table 1: This table compares the final accuracies (Top1 - Top5) of the full precision network with

our binary precision networks; Binary-Weight-Networks(BWN) and XNOR-Networks(XNOR-
Net) and the competitor methods; BinaryConnect(BC) and BinaryNet(BNN).

Alexnet on ImageNet

BC and BNN SOTA at the point.




XNOR-Net: Accuracy Experiments

ResNet, Top-1 ResNet, Top-5
80
~~~ ~~
X S
p— p—
60— e >,
B pERRmmmmh e ~
= =
5 40 :
< - - - BWN-train < - - - BWN-train
e BWWN-val e BWN-val
- = = XNOR-Net-train . - = = XNOR-Net-train
20 e XNOR-Net-val 20 ——— X NOR-Net-val
0 20 40 60 0 20 40 60
Number of epochs Number of epochs

(a) (b)

ResNet- |8 on ImageNet



XNOR-Net: Accuracy Experiments

ResNet-13 J Googlenet

—

Network Variations |top-1 [top-5 |top-1 |top-5
Binary-Weight-Network 60.8 [83.0 65.5 [86.1
XNOR-Network 1512 |73.2  |IN/A  |N/A
Full-Precision-Network 169.3 [89.2 [|71.3 I90.0




XNOR-Net: Experiments

O to 30X s Os (but not for same accuracy)

~asy to binarize algorithm

Networks surtable for ec ev|Ces
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Methodology Activation Gain Multiplicity Regularization
Original BNN Sign Function None 1 None
XNOR-Net Sign Function Statistical 1 None
DoReFa-Net Sign Function Learned Param. 1 None
Tang et al. PReLU Inside PReL.U 2 L2
ABC-Net Sign w/Thresh. Learned Param. 5 None
BNN+ Sign w/SS¢ for STE  Learned Param. 1 L1and L2

Table 3. Comparison of accuracies on the ImageNet dataset from works presented in this section.
Full precision network accuracies are included for comparison as well.

Methodology  Topology  Top-1 Accuracy (%) Top-5 Accuracy (%)
Original BNN  AlexNet 41.8 67.1
Original BNN  GoogleNet 47.1 69.1
XNOR-Net AlexNet 442 69.2
XNOR-Net ResNet18 51.2 73.2
DoReFa-Net AlexNet 43.6 -
Tang et al. 51.4 75.6
ABC-Net ResNet18 65.0 85.9
ABC-Net ResNet34 68.4 88.2
ABC-Net ResNet50 76.1 92.8
BNN+ AlexNet 46.11 75.70
BNN+ ResNet18 52.64 72.98
Full Precision AlexNet 57.1 80.2
Full Precision = GoogleNet 71.3 90.0
Full Precision =~ ResNetl8 69.3 89.2
Full Precision =~ ResNet34 73.3 91.3
Full Precision = ResNet50 76.1 92.8




Recent Insights

Published as a conference paper at ICLR 2019

AN EMPIRICAL STUDY OF
BINARY NEURAL NETWORKS’ OPTIMISATION

Milad Alizadeh, Javier Fernandez-Marqués, Nicholas D. Lane & Yarin Gal
Department of Computer Science

University of Oxford



Binarizing a fully trained model helps

Table 5: Training binary models using pre-trained full-precision models for CIFAR-10 (ResNet-18
and VGG-10) and ImageNet (AlexNet-like) datasets.

Binarisation Best Validation Accuracy Test Accuracy
. end-to-end 94.40% (1n epoch 457) 91.16%
Binary ResNet-18 ¢ o full-precision  93.60% (in epoch 17) 91.18%
. end-to-end 89.76% (1n epoch 391) 89.18%
simary VGG-10 ¢ o full-precision  90.16% (in epoch 24) 89.32%
end-to-end 51.98% (1in epoch 88) -

Binary AlexNet-like from full-precision 51.85% (in epoch 30) _



Binarizing a fully trained model helps
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Figure 4: A binary model (red) 1s initialised from a full precision model (blue) and reaches top
accuracy 1n a fraction of the epochs that would require to train a binary model (green) end-to-end.



Some theoretical bounds



Binary Nets can be Very txpressive

Any network can be approximated
Dy log-bigger binary network

%A\\ 4/A\‘\v

( V4,
)\ 'l: x‘ AL 1'5 ;: 0,\
A

< 0> <

\\ %/ 4 \
’«vr* ‘\vﬁ

a neural network

with high accuracy a larger, binary network can approximate 1t



Step |: Quantizing to Finite Precision

quantize to
k=0 (log (dlle) )

w = 0.257081639...1... € [—1,1] w = 0.257081639...1 € {—-1:1/e: 1}
\_w—_./

k digits




Step |: Quantizing to Finite Precision

quantize to

W =

Theorem:

the welgh
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ed by k = O(log(dl/€))



Step |: Quantizing to Finite Precision

Theorem:

the welgh

et f(x) = oc(W,o(W,_;...0(W,x))) be such that |W]|, < 1. Then, for any € > 0, we can replace

ts of f(x) with a finite precision truncated ones, each represen

OIts such t

nat

max [[f(x) = fi(0)]| < €

[xlI<1

e Proof:

hen

lw—w,| < 0.

ed by k = O(log(dl/€))

etwe A, |[w| <1 and w, be afinite-precision truncation of w with O(log(1/6)) digits.

Hence for a “network” f(x) = o(wx), we can get f.(x) = o(w;x) st. max | f(x) —f,(x)| <o

| x|

<1



Step |: Quantizing to Finite Precision

Theorem:

the welgh
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~or a single layer, we obtain ||6(Wx) — a(W,x)|| < ||[Wx — W,|| < d?6



Step |: Quantizing to Finite Precision

Theorem:
et f(x) = oc(W,o(W,_;...0(W,x))) be such that |W]|, < 1. Then, for any € > 0, we can replace

the weights of f(x) with a finite precision truncated ones, each represented by k = O(log(dl/€))
oIts such that

max [[f(x) = fi(0)]| < €

[xlI<1

* Proof:
~or a single layer, we obtain ||6(Wx) — a(W,x)|| < ||[Wx — W,|| < d?6

~or two layers we have

| Woo(Wix) — W, ,6(W,  X)|| < |[Woy — W, (y + or)|
< Wy = Wy iyl + [[oWy 7|
< [Wo = Wodllivil + 0
<26



Step |: Quantizing to Finite Precision

Theorem:

the welgh

et f(x) = o(W,o(W,_,...0(W,x))) be such that |W||, < 1. Then, for ar

vy € > 0, we can replace

OIts such t
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Nnat

max [[f(x) = 40| < e
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e Proof:
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€
Setting 0 = —— completes the proof
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ed by k = O(log(dl/€))



Step |: Quantizing to Finite Precision

quantize to

W =
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Step 2: Mapping to Integer Network

w=0.257081639...1 € {—1:1/e: 1} w = 257081639...1 € {—1/e:1:1/¢}

Rel.us are positive homogeneous, hence for positive a
ola-x)) =a- o(x)

Finite precision network I1s equivalent to integer network




Step 3: From Integers Weights to Binary

Q: How can we build f; using binary ReLU network?




Binary Gadgets

u3asic Unit! | Replicate In Serial
+1S+1 +1S+1 +1S+1
+1 +1 +1 +1 +1 +1

gl(X) = . maX{x,O} gi(x) — 2i maX{X,O}

Jix) = g{(x) — g(—x)

=Dl . x
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Approximate

real
finr

net with

‘e prec

Recap of proof steps

>

Replace finite
prec with
integer

>

reminder: this 1s an

existence proof, not an
algorrithm!

Replace each

integer

edge with log-
Relu

digger FC

v

Apply on all weight and
layers



Binary ReLU Nets can be Very bExpressive

Any network can be approximated
by O(log(dl/e))-deeper anc O(lol/ €))-wider binary network
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a neural network

with high accuracy a larger, binary network can approximate 1t



+ Binary ne

Conclusion

'works can be accurate and efficient

+ [raining a

corithms based on simple variants of back

Open Questions

DO

+Theoretical analysis on algorithms for training BININs

- Network architectures amenable to binarization

+[heory for threshold+binary weights!
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