
How efficient and expressive are 
Binary Neural Networks



Standard approach to precision



Binary Neural Networks
• A lot of recent work since 2016

• Several benefits:
• Memory/Storage/Comm/Compute
• Energy

• Typically suffer from accuracy loss

• Learning algorithms are a bit too heuristic

• Theoretical results very very limited (expressivity/algorithmic aspects)
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Multiplication => XNOR + bitcount
A B XNOR(A,B)

0 (-1) 0 (-1) 1 (+1)
0 (-1) 1 (+1) 0 (-1)
1(+1) 0 (-1) 0 (-1)
1 (+1) 1 (+1) 1 (+1)

+1

−1

+1

2 ⋅ popcount ( XNOR(−1, − 1); XNOR(1, − 1); XNOR(1,1) ) − 3



Some ways to 
Binarize Neural Nets





XNOR-Net

• Binary-Weight-Nets: conv filters are only +1/-1 
• XNOR-Nets: input AND filter is binary 



How to binarize a network?

• We hope that  

• For some  matrix 

W * X ≈ a ⋅ B * X

±1 B

Goal: 
Find the best binary network that approximates original



How to binarize a network?
• Method: for a given layer, and a given matrix, F, the best binary 

matrix B is given by

• min
a∈ℝ,Bi,j∈{−1,1}

∥W * X − αB * X∥2
F ≡ min

a∈ℝ,Bi,j∈{−1,1}
∥W − αB∥2

F

[Rastegari, Ordonez, Redmon, Farhadi, 2016]
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Complexity of binarization
• Optimal solution of  ismin
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Complexity of binarization
• Optimal solution of  is

•Computable in linear time in number of weights.

min
a∈ℝ,Bi,j∈{−1,1}

∥W − αB∥2
F

B* = sign(W)  and  α* =
trace(WTB*)

N

[Rastegari, Ordonez, Redmon, Farhadi, 2016]



What if you want to Binarize Inputs too?
• We would hope that  where

• Similar, but a bit more involved solution for this too

W * X ≈ a ⋅ B * Z

min
a∈ℝ,Bi,j,Zi,j∈{−1,1}

∥W * X − αB * Z∥2
F



Backprop for BW-Net
• How do we train?

• Forward pass: binarize weights, and compute loss

• Backward pass: replace grad of  function with  
and follow chain rule

• Parameter update: use floats

• XNOR-net backprop a little trickier but similar

∇sign(w) w1|w|<1



XNOR-Net: Efficiency Experiments



XNOR-Net: Accuracy Experiments

Alexnet on ImageNet
BC and BNN SOTA at the point. 



XNOR-Net: Accuracy Experiments

Alexnet on ImageNet
BC and BNN SOTA at the point. 



XNOR-Net: Accuracy Experiments

ResNet-18 on ImageNet



XNOR-Net: Accuracy Experiments



XNOR-Net: Experiments
up to 30x speedups (but not for same accuracy)

Easy to binarize algorithm

Networks suitable for edge devices



Semi-current state





Recent insights



Binarizing a fully trained model helps



Binarizing a fully trained model helps



Some theoretical bounds



Binary Nets can be Very Expressive
Any network can be approximated 

by log-bigger binary network

a neural network 
with high accuracy

+1

−1

a larger, binary network can approximate it

≈



Step 1: Quantizing to Finite Precision

w = 0.257081639...1... ∈ [−1,1]

quantize to 
 k = O (log (dl/ϵ))

w = 0.257081639...1 ∈ {−1 : 1/ϵ : 1}

 digitsk
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Theorem:
Let  be such that . Then, for any , we can replace 
the weights of  with a finite precision truncated ones, each represented by  
bits such that 

f(x) = σ(Wlσ(Wl−1…σ(W1x))) ∥Wi∥2 ≤ 1 ϵ > 0
f(x) k = O(log(dl/ϵ))

max
∥x∥≤1

∥f(x) − fk(x)∥ ≤ ϵ
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Theorem:
Let  be such that . Then, for any , we can replace 
the weights of  with a finite precision truncated ones, each represented by  
bits such that 
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• Proof:
Let  and  be a finite-precision truncation of  with  digits. 
Then . 

Hence for a “network” , we can get  s.t. 

w ∈ ℛ, |w | ≤ 1 wk w O(log(1/δ))
|w − wk | ≤ δ

f(x) = σ(wx) fk(x) = σ(wkx) max
|x|≤1

| f(x) − fk(x) | ≤ δ
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Step 1: Quantizing to Finite Precision
Theorem:
Let  be such that . Then, for any , we can replace 
the weights of  with a finite precision truncated ones, each represented by  
bits such that 

f(x) = σ(Wlσ(Wl−1…σ(W1x))) ∥Wi∥2 ≤ 1 ϵ > 0
f(x) k = O(log(dl/ϵ))

max
∥x∥≤1

∥f(x) − fk(x)∥ ≤ ϵ

• Proof:
For a single layer, we obtain 

For two layers we have

 

∥σ(Wx) − σ(Wkx)∥ ≤ ∥Wx − Wk∥ ≤ d2δ

∥W2σ(W1x) − W2,kσ(W2,kx)∥ ≤ ∥W2y − W2,k(y + δr)∥
≤ ∥W2y − W2,ky∥ + ∥δW2,kr∥
≤ ∥W2 − W2,k∥∥y∥ + δ
≤ 2δ



Step 1: Quantizing to Finite Precision
Theorem:
Let  be such that . Then, for any , we can replace 
the weights of  with a finite precision truncated ones, each represented by  
bits such that 

f(x) = σ(Wlσ(Wl−1…σ(W1x))) ∥Wi∥2 ≤ 1 ϵ > 0
f(x) k = O(log(dl/ϵ))

max
∥x∥≤1

∥f(x) − fk(x)∥ ≤ ϵ

• Proof:
For  layers we have

Setting  completes the proof

l max
∥x∥≤1

∥f(x) − fk(x)∥ ≤ d2 ⋅ l ⋅ ϵ

δ =
ϵ

d2l
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Step 2: Mapping to Integer Network

x  10k

Finite precision network is equivalent to integer network

w = 257081639...1 ∈ {−1/ϵ : 1 : 1/ϵ}

σ(a ⋅ x)) = a ⋅ σ(x)

w = 0.257081639...1 ∈ {−1 : 1/ϵ : 1}

ReLus are positive homogeneous, hence for positive  a



Step 3: From Integers Weights to Binary
target integer weight

w ∈ ℤ

w =
⌊log w⌋

∑
i=0

ai ⋅ 2i

ai ∈ {−1,0,1}

f0(x) = 20x

f1(x) = 21x

fk(x) = 2kx

⋮

+1

+1

+1

a0

a1

ak= k

Q: How can we build  using binary ReLU network?fi



Binary Gadgets
Basic Unit

gi(x) = 2i max{x,0}

fi(x) = gi(x) − gi(−x)
= 2i ⋅ x

+1 +1

+1+1

g1(x) = 2 ⋅ max{x,0}

Replicate in Serial

+1 +1

+1+1

+1 +1

+1+1
⋯

Add/Subtract +1 +1

+1+1

+1 +1

+1+1
⋯

+1 +1

+1+1

+1 +1

+1+1
⋯

+1

−1

+1

−1



Binary Gadgets
target integer weight

w ∈ ℤ

=

<latexit sha1_base64="Atys3wu+EouoZckwoW8Y0v7PIyg=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIUZEdRDMOjFYwJmgWQIPZ2apE3PQnePEEKewIsHRbzqw3j3Ir6NneWgiT80fPx/FV1VfiK40o7zbWWWlldW17Lr9sbm1vZObnevpuJUMqyyWMSy4VOFgkdY1VwLbCQSaegLrPv963Fev0epeBzd6kGCXki7EQ84o9pYlWI7l3cKzkRkEdwZ5C8/7GLy/mWX27nPVidmaYiRZoIq1XSdRHtDKjVnAkd2K1WYUNanXWwajGiIyhtOBh2RI+N0SBBL8yJNJu7vjiENlRqEvqkMqe6p+Wxs/pc1Ux2ce0MeJanGiE0/ClJBdEzGW5MOl8i0GBigTHIzK2E9KinT5ja2OYI7v/Ii1E4K7mnhouLkS1cwVRYO4BCOwYUzKMENlKEKDBAe4AmerTvr0XqxXqelGWvWsw9/ZL39APA0kAo=</latexit>

+1 +1

+1 +1

w =
⌊log w⌋

∑
i=0

ai ⋅ 2i

ai ∈ {−1,0,1}

⋯
⋮

𝒪(⌊log w⌋)

𝒪(⌊log w⌋)

                                                                                       21

                                                                                         
22

                                                                                          2log(w)



Recap of proof steps
Approximate 
real net with 
finite prec

Replace finite 
prec with 
integer

Replace each integer 
edge with log-bigger FC 

Relu

Apply on all weight and 
layers

reminder: this is an 
existence proof, not an 

algorithm!



Binary ReLU Nets can be Very Expressive
Any network can be approximated 

by -deeper and -wider binary networkO(log(dl/ϵ)) O(log2(dl/ϵ))

a neural network 
with high accuracy

+1

−1

a larger, binary network can approximate it

≈



Conclusion

• Binary networks can be accurate and efficient
• Training algorithms based on simple variants of backprop

Open Questions

• Theoretical analysis on algorithms for training BNNs

• Network architectures amenable to binarization

• Theory for threshold+binary weights?
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