
How efficient and expressive are
Binary Neural Networks

Standard approach to precision

Binary Neural Networks
• A lot of recent work since 2016

• Several benefits:
• Memory/Storage/Comm/Compute
• Energy

• Typically suffer from accuracy loss

• Learning algorithms are a bit too heuristic

• Theoretical results very very limited (expressivity/algorithmic aspects)

+1

−1

Multiplication => XNOR + bitcount
A B XNOR(A,B)

0 (-1) 0 (-1) 1 (+1)
0 (-1) 1 (+1) 0 (-1)
1(+1) 0 (-1) 0 (-1)
1 (+1) 1 (+1) 1 (+1)

+1

−1

+1

2 ⋅ popcount (XNOR(−1, − 1); XNOR(1, − 1); XNOR(1,1)) − 3

Some ways to
Binarize Neural Nets

XNOR-Net

• Binary-Weight-Nets: conv filters are only +1/-1
• XNOR-Nets: input AND filter is binary

How to binarize a network?

• We hope that

• For some matrix

W * X ≈ a ⋅ B * X

±1 B

Goal:
Find the best binary network that approximates original

How to binarize a network?
• Method: for a given layer, and a given matrix, F, the best binary

matrix B is given by

• min
a∈ℝ,Bi,j∈{−1,1}

∥W * X − αB * X∥2
F ≡ min

a∈ℝ,Bi,j∈{−1,1}
∥W − αB∥2

F

[Rastegari, Ordonez, Redmon, Farhadi, 2016]

How to binarize a network?
min

a∈ℝ,Bi,j∈{−1,1}
∥W − αB∥2

F

≡ min
a∈ℝ,Bi,j∈{−1,1}

∥W∥2
F − 2α ⋅ trace{WTB} + α2∥B∥2

F

How to binarize a network?
min

a∈ℝ,Bi,j∈{−1,1}
∥W − αB∥2

F

≡ min
a∈ℝ,Bi,j∈{−1,1}

∥W∥2
F − 2α ⋅ trace{WTB} + α2∥B∥2

F

≡ min
a∈ℝ,Bi,j∈{−1,1}

− 2α ⋅ trace{WTB} + α2∥B∥2
F

How to binarize a network?
min

a∈ℝ,Bi,j∈{−1,1}
∥W − αB∥2

F

≡ min
a∈ℝ,Bi,j∈{−1,1}

∥W∥2
F − 2α ⋅ trace{WTB} + α2∥B∥2

F

≡ min
a∈ℝ,Bi,j∈{−1,1}

− 2α ⋅ trace{WTB} + α2∥B∥2
F

≡ min
a∈ℝ ({ min

Bi,j∈{−1,1}
− 2α ⋅ trace{WTB}} + α2 ⋅ N)

How to binarize a network?
min

a∈ℝ,Bi,j∈{−1,1}
∥W − αB∥2

F

≡ min
a∈ℝ,Bi,j∈{−1,1}

∥W∥2
F − 2α ⋅ trace{WTB} + α2∥B∥2

F

≡ min
a∈ℝ,Bi,j∈{−1,1}

− 2α ⋅ trace{WTB} + α2∥B∥2
F

≡ min
a∈ℝ ({ min

Bi,j∈{−1,1}
− 2α ⋅ trace{WTB}} + α2 ⋅ N)

≡ min
a∈ℝ (−2α { max

Bi,j∈{−1,1}
vec(W)Tvec(B)} + α2 ⋅ N)

How to binarize a network?
min

a∈ℝ,Bi,j∈{−1,1}
∥W − αB∥2

F

≡ min
a∈ℝ,Bi,j∈{−1,1}

∥W∥2
F − 2α ⋅ trace{WTB} + α2∥B∥2

F

≡ min
a∈ℝ,Bi,j∈{−1,1}

− 2α ⋅ trace{WTB} + α2∥B∥2
F

≡ min
a∈ℝ ({ min

Bi,j∈{−1,1}
− 2α ⋅ trace{WTB}} + α2 ⋅ N)

≡ min
a∈ℝ (−2α { max

Bi,j∈{−1,1}
vec(W)Tvec(B)} + α2 ⋅ N)

≡ min
a∈ℝ (−2α { max

b∈{−1,1}N
wTb} + α2 ⋅ N)

Complexity of binarization
• Optimal solution of ismin

a∈ℝ,Bi,j∈{−1,1}
∥W − αB∥2

F

[Rastegari, Ordonez, Redmon, Farhadi, 2016]

Complexity of binarization
• Optimal solution of ismin

a∈ℝ,Bi,j∈{−1,1}
∥W − αB∥2

F

B* = sign(W) and α* =
trace(WTB*)

N

[Rastegari, Ordonez, Redmon, Farhadi, 2016]

Complexity of binarization
• Optimal solution of is

•Computable in linear time in number of weights.

min
a∈ℝ,Bi,j∈{−1,1}

∥W − αB∥2
F

B* = sign(W) and α* =
trace(WTB*)

N

[Rastegari, Ordonez, Redmon, Farhadi, 2016]

What if you want to Binarize Inputs too?
• We would hope that where

• Similar, but a bit more involved solution for this too

W * X ≈ a ⋅ B * Z

min
a∈ℝ,Bi,j,Zi,j∈{−1,1}

∥W * X − αB * Z∥2
F

Backprop for BW-Net
• How do we train?

• Forward pass: binarize weights, and compute loss

• Backward pass: replace grad of function with  
and follow chain rule

• Parameter update: use floats

• XNOR-net backprop a little trickier but similar

∇sign(w) w1|w|<1

XNOR-Net: Efficiency Experiments

XNOR-Net: Accuracy Experiments

Alexnet on ImageNet
BC and BNN SOTA at the point.

XNOR-Net: Accuracy Experiments

Alexnet on ImageNet
BC and BNN SOTA at the point.

XNOR-Net: Accuracy Experiments

ResNet-18 on ImageNet

XNOR-Net: Accuracy Experiments

XNOR-Net: Experiments
up to 30x speedups (but not for same accuracy)

Easy to binarize algorithm

Networks suitable for edge devices

Semi-current state

Recent insights

Binarizing a fully trained model helps

Binarizing a fully trained model helps

Some theoretical bounds

Binary Nets can be Very Expressive
Any network can be approximated

by log-bigger binary network

a neural network
with high accuracy

+1

−1

a larger, binary network can approximate it

≈

Step 1: Quantizing to Finite Precision

w = 0.257081639...1... ∈ [−1,1]

quantize to
 k = O (log (dl/ϵ))

w = 0.257081639...1 ∈ {−1 : 1/ϵ : 1}

 digitsk

Step 1: Quantizing to Finite Precision

w = 0.257081639...1... ∈ [−1,1]

quantize to
 k = O (log (dl/ϵ))

w = 0.257081639...1 ∈ {−1 : 1/ϵ : 1}

 digitsk

Theorem:
Let be such that . Then, for any , we can replace
the weights of with a finite precision truncated ones, each represented by
bits such that

f(x) = σ(Wlσ(Wl−1…σ(W1x))) ∥Wi∥2 ≤ 1 ϵ > 0
f(x) k = O(log(dl/ϵ))

max
∥x∥≤1

∥f(x) − fk(x)∥ ≤ ϵ

Step 1: Quantizing to Finite Precision
Theorem:
Let be such that . Then, for any , we can replace
the weights of with a finite precision truncated ones, each represented by
bits such that

f(x) = σ(Wlσ(Wl−1…σ(W1x))) ∥Wi∥2 ≤ 1 ϵ > 0
f(x) k = O(log(dl/ϵ))

max
∥x∥≤1

∥f(x) − fk(x)∥ ≤ ϵ

• Proof:
Let and be a finite-precision truncation of with digits.
Then .

Hence for a “network” , we can get s.t.

w ∈ ℛ, |w | ≤ 1 wk w O(log(1/δ))
|w − wk | ≤ δ

f(x) = σ(wx) fk(x) = σ(wkx) max
|x|≤1

| f(x) − fk(x) | ≤ δ

Step 1: Quantizing to Finite Precision
Theorem:
Let be such that . Then, for any , we can replace
the weights of with a finite precision truncated ones, each represented by
bits such that

f(x) = σ(Wlσ(Wl−1…σ(W1x))) ∥Wi∥2 ≤ 1 ϵ > 0
f(x) k = O(log(dl/ϵ))

max
∥x∥≤1

∥f(x) − fk(x)∥ ≤ ϵ

• Proof:
For a single layer, we obtain ∥σ(Wx) − σ(Wkx)∥ ≤ ∥Wx − Wk∥ ≤ d2δ

Step 1: Quantizing to Finite Precision
Theorem:
Let be such that . Then, for any , we can replace
the weights of with a finite precision truncated ones, each represented by
bits such that

f(x) = σ(Wlσ(Wl−1…σ(W1x))) ∥Wi∥2 ≤ 1 ϵ > 0
f(x) k = O(log(dl/ϵ))

max
∥x∥≤1

∥f(x) − fk(x)∥ ≤ ϵ

• Proof:
For a single layer, we obtain

For two layers we have

∥σ(Wx) − σ(Wkx)∥ ≤ ∥Wx − Wk∥ ≤ d2δ

∥W2σ(W1x) − W2,kσ(W2,kx)∥ ≤ ∥W2y − W2,k(y + δr)∥
≤ ∥W2y − W2,ky∥ + ∥δW2,kr∥
≤ ∥W2 − W2,k∥∥y∥ + δ
≤ 2δ

Step 1: Quantizing to Finite Precision
Theorem:
Let be such that . Then, for any , we can replace
the weights of with a finite precision truncated ones, each represented by
bits such that

f(x) = σ(Wlσ(Wl−1…σ(W1x))) ∥Wi∥2 ≤ 1 ϵ > 0
f(x) k = O(log(dl/ϵ))

max
∥x∥≤1

∥f(x) − fk(x)∥ ≤ ϵ

• Proof:
For layers we have

Setting completes the proof

l max
∥x∥≤1

∥f(x) − fk(x)∥ ≤ d2 ⋅ l ⋅ ϵ

δ =
ϵ

d2l

Step 1: Quantizing to Finite Precision

w = 0.257081639...1... ∈ [−1,1]

quantize to
 k = O (log (dl/ϵ))

w = 0.257081639...1 ∈ {−1 : 1/ϵ : 1}

 digitsk

Theorem:
Let be such that . Then, for any , we can replace
the weights of with a finite precision truncated ones, each represented by
bits such that

f(x) = σ(Wlσ(Wl−1…σ(W1x))) ∥Wi∥2 ≤ 1 ϵ > 0
f(x) k = O(log(dl/ϵ))

max
∥x∥≤1

∥f(x) − fk(x)∥ ≤ ϵ

Step 2: Mapping to Integer Network

x 10k

Finite precision network is equivalent to integer network

w = 257081639...1 ∈ {−1/ϵ : 1 : 1/ϵ}

σ(a ⋅ x)) = a ⋅ σ(x)

w = 0.257081639...1 ∈ {−1 : 1/ϵ : 1}

ReLus are positive homogeneous, hence for positive a

Step 3: From Integers Weights to Binary
target integer weight

w ∈ ℤ

w =
⌊log w⌋

∑
i=0

ai ⋅ 2i

ai ∈ {−1,0,1}

f0(x) = 20x

f1(x) = 21x

fk(x) = 2kx

⋮

+1

+1

+1

a0

a1

ak= k

Q: How can we build using binary ReLU network?fi

Binary Gadgets
Basic Unit

gi(x) = 2i max{x,0}

fi(x) = gi(x) − gi(−x)
= 2i ⋅ x

+1 +1

+1+1

g1(x) = 2 ⋅ max{x,0}

Replicate in Serial

+1 +1

+1+1

+1 +1

+1+1
⋯

Add/Subtract +1 +1

+1+1

+1 +1

+1+1
⋯

+1 +1

+1+1

+1 +1

+1+1
⋯

+1

−1

+1

−1

Binary Gadgets
target integer weight

w ∈ ℤ

=

<latexit sha1_base64="Atys3wu+EouoZckwoW8Y0v7PIyg=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIUZEdRDMOjFYwJmgWQIPZ2apE3PQnePEEKewIsHRbzqw3j3Ir6NneWgiT80fPx/FV1VfiK40o7zbWWWlldW17Lr9sbm1vZObnevpuJUMqyyWMSy4VOFgkdY1VwLbCQSaegLrPv963Fev0epeBzd6kGCXki7EQ84o9pYlWI7l3cKzkRkEdwZ5C8/7GLy/mWX27nPVidmaYiRZoIq1XSdRHtDKjVnAkd2K1WYUNanXWwajGiIyhtOBh2RI+N0SBBL8yJNJu7vjiENlRqEvqkMqe6p+Wxs/pc1Ux2ce0MeJanGiE0/ClJBdEzGW5MOl8i0GBigTHIzK2E9KinT5ja2OYI7v/Ii1E4K7mnhouLkS1cwVRYO4BCOwYUzKMENlKEKDBAe4AmerTvr0XqxXqelGWvWsw9/ZL39APA0kAo=</latexit>

+1 +1

+1 +1

w =
⌊log w⌋

∑
i=0

ai ⋅ 2i

ai ∈ {−1,0,1}

⋯
⋮

𝒪(⌊log w⌋)

𝒪(⌊log w⌋)

 21

22

 2log(w)

Recap of proof steps
Approximate
real net with
finite prec

Replace finite
prec with
integer

Replace each integer
edge with log-bigger FC

Relu

Apply on all weight and
layers

reminder: this is an
existence proof, not an

algorithm!

Binary ReLU Nets can be Very Expressive
Any network can be approximated

by -deeper and -wider binary networkO(log(dl/ϵ)) O(log2(dl/ϵ))

a neural network
with high accuracy

+1

−1

a larger, binary network can approximate it

≈

Conclusion

• Binary networks can be accurate and efficient
• Training algorithms based on simple variants of backprop

Open Questions

• Theoretical analysis on algorithms for training BNNs

• Network architectures amenable to binarization

• Theory for threshold+binary weights?

Reading List
Courbariaux, M., Bengio, Y. and David, J.P., 2015. Binaryconnect: Training deep neural networks with binary weights during
propagations. Advances in neural information processing systems, 28.

Rastegari, M., Ordonez, V., Redmon, J. and Farhadi, A., 2016, October. Xnor-net: Imagenet classification using binary convolutional
neural networks. In European conference on computer vision (pp. 525-542). Springer, Cham.

Qin, H., Gong, R., Liu, X., Bai, X., Song, J. and Sebe, N., 2020. Binary neural networks: A survey. Pattern Recognition, 105, p.107281.

Alizadeh, M., Fernández-Marqués, J., Lane, N.D. and Gal, Y., 2018, September. An empirical study of binary neural networks'
optimisation. In International conference on learning representations.

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W. and Keutzer, K., 2021. A survey of quantization methods for efficient neural
network inference. arXiv preprint arXiv:2103.13630.

Sreenivasan, K., Rajput, S., Sohn, J.Y. and Papailiopoulos, D., 2021. Finding Everything within Random Binary Networks. AISTATS 2022

