How efficient and expressive are Binary Neural Networks

Standard approach to precision

float32 range: ~1e⁻³⁸ to ~3e³⁸

float16 range: ~5.9e⁻⁸ to 6.5e⁴

Binary Neural Networks

- A lot of recent work since 2016
- Several benefits:
 - Memory/Storage/Comm/Compute
 - Energy
- Typically suffer from accuracy loss
- Learning algorithms are a bit too heuristic

• Theoretical results very very limited (expressivity/algorithmic aspects)

Multiplication => XNOR + bitcount

$2 \cdot \text{popcount} (\text{XNOR}(-1, -1); \text{XNOR}(1, -1); \text{XNOR}(1, 1)) - 3$

Some ways to Binarize Neural Nets

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks

Mohammad Rastegari[†], Vicente Ordonez[†], Joseph Redmon^{*}, Ali Farhadi^{†*}

Allen Institute for AI[†], University of Washington^{*} {mohammadr, vicenteor}@allenai.org {pjreddie, ali}@cs.washington.edu

NOR-Net

• XNOR-Nets: input AND filter is binary

rk Variations	Operations used in Convolution	Memory Saving (Inference)	Computation Saving (Inference)	Accuracy on ImageNet (AlexNet)
Real-Value Weights	+,-,×	1x	1x	%56.7
Binary Weights	+,-	~32x	~2x	%56.8
Binary Weights	XNOR , bitcount	~32x	~58x	%44.2

Binary-Weight-Nets: conv filters are only +1/-1

Goal: Find the best binary network that approximates original

• We hope that $\mathbf{W}^* \mathbf{X} \approx a \cdot \mathbf{B}^* \mathbf{X}$

• For some ± 1 matrix **B**

- matrix B is given by

• Method: for a given layer, and a given matrix, F, the best binary

• $\min_{a \in \mathbb{R}, B_{i,j} \in \{-1,1\}} \|\mathbf{W} * \mathbf{X} - \alpha \mathbf{B} * \mathbf{X}\|_F^2 \equiv \min_{a \in \mathbb{R}, B_{i,j} \in \{-1,1\}} \|\mathbf{W} - \alpha \mathbf{B}\|_F^2$

 $\min_{a \in \mathbb{R}, B_{i,j} \in \{-1,1\}} \|\mathbf{W} - \alpha \mathbf{B}\|_F^2$

 $\equiv \min_{a \in \mathbb{R}, B_{i,j} \in \{-1,1\}} \|\mathbf{W}\|_F^2 - 2\alpha \cdot \operatorname{trace}\{\mathbf{W}^T \mathbf{B}\} + \alpha^2 \|\mathbf{B}\|_F^2$

 $\min_{a \in \mathbb{R}, B_{i,j} \in \{-1,1\}} \|\mathbf{W} - \alpha \mathbf{B}\|_F^2$

 $= \min_{a \in \mathbb{R}, B_{i,j} \in \{-1,1\}} \|\mathbf{W}\|_F^2 - 2\alpha \cdot \operatorname{trace}\{\mathbf{W}^T \mathbf{B}\} + \alpha^2 \|\mathbf{B}\|_F^2$ ≡

min $-2\alpha \cdot \text{trace}\{\mathbf{W}^T\mathbf{B}\} + \alpha^2 \|\mathbf{B}\|_F^2$ $a \in \mathbb{R}, B_{i,i} \in \{-1, 1\}$

 $\min_{a \in \mathbb{R}, B_{i,j} \in \{-1,1\}} \|\mathbf{W} - \alpha \mathbf{B}\|_F^2$

 $\equiv \min_{a \in \mathbb{R}, B_{i,j} \in \{-1,1\}} \|\mathbf{W}\|_F^2 - 2\alpha \cdot \operatorname{trace}\{\mathbf{W}^T \mathbf{B}\} + \alpha^2 \|\mathbf{B}\|_F^2$ $\equiv \min_{\substack{-2\alpha \cdot \text{trace}}} \{\mathbf{W}^T \mathbf{B}\} + \alpha^2 \|\mathbf{B}\|_F^2$ $a \in \mathbb{R}, B_{i,i} \in \{-1, 1\}$ $\equiv \min_{a \in \mathbb{R}} \left\{ \left\{ \min_{B_{i,j} \in \{-1,1\}} - 2\alpha \cdot \text{trace}\{\mathbf{W}^T \mathbf{B}\} \right\} + \alpha^2 \cdot N \right\}$

 $\min_{a \in \mathbb{R}, B_{i,j} \in \{-1,1\}} \|\mathbf{W} - \alpha \mathbf{B}\|_F^2$ $\equiv \min_{a \in \mathbb{R}, B_{i,j} \in \{-1,1\}} \|\mathbf{W}\|_F^2 - 2\alpha \cdot \operatorname{trace}\{\mathbf{W}^T \mathbf{B}\} + \alpha^2 \|\mathbf{B}\|_F^2$ $\equiv \min -2\alpha \cdot \operatorname{trace}\{\mathbf{W}^T \mathbf{B}\} + \alpha^2 \|\mathbf{B}\|_F^2$ $a \in \mathbb{R}, B_{i,i} \in \{-1, 1\}$ $\equiv \min_{a \in \mathbb{R}} \left(\left\{ \min_{B_{i,j} \in \{-1,1\}} - 2\alpha \cdot \text{trace}\{\mathbf{W}^T \mathbf{B}\} \right\} + \alpha^2 \cdot N \right)$ $\equiv \min_{a \in \mathbb{R}} \left(-2\alpha \left\{ \max_{B_{i,j} \in \{-1,1\}} \operatorname{vec}(\mathbf{W})^T \operatorname{vec}(\mathbf{B}) \right\} + \alpha^2 \cdot N \right)$

 $\min_{a \in \mathbb{R}, B_{i,j} \in \{-1,1\}} \|\mathbf{W} - \alpha \mathbf{B}\|_F^2$ $\equiv \min_{a \in \mathbb{R}, B_{i,j} \in \{-1,1\}} \|\mathbf{W}\|_F^2 - 2\alpha \cdot \operatorname{trace}\{\mathbf{W}^T \mathbf{B}\} + \alpha^2 \|\mathbf{B}\|_F^2$ $\equiv \min -2\alpha \cdot \operatorname{trace}\{\mathbf{W}^T \mathbf{B}\} + \alpha^2 \|\mathbf{B}\|_F^2$ $a \in \mathbb{R}, B_{i,i} \in \{-1, 1\}$ $\equiv \min_{a \in \mathbb{R}} \left(\left\{ \min_{B_{i,j} \in \{-1,1\}} - 2\alpha \cdot \text{trace}\{\mathbf{W}^T \mathbf{B}\} \right\} + \alpha^2 \cdot N \right)$ $\equiv \min_{a \in \mathbb{R}} \left(-2\alpha \left\{ \max_{B_{i,j} \in \{-1,1\}} \operatorname{vec}(\mathbf{W})^T \operatorname{vec}(\mathbf{B}) \right\} + \alpha^2 \cdot N \right)$ $\equiv \min_{\alpha \in \mathbb{R}} \left(-2\alpha \left\{ \max_{\mathbf{b} \in \{-1,1\}^N} \mathbf{w}^T \mathbf{b} \right\} + \alpha^2 \cdot N \right)$

• Optimal solution of $\min_{a \in \mathbb{R}, B_{i,j} \in \{-1,1\}} \|\mathbf{W} - \alpha \mathbf{B}\|_F^2$ is

Complexity of binarization

• Optimal solution of $\min_{a \in \mathbb{R}, B_{i,j} \in \{-1,1\}} \|\mathbf{W} - \alpha \mathbf{B}\|_F^2$ is

$\mathbf{B}^* = \operatorname{sign}(\mathbf{W})$ and $\alpha^* = \frac{\operatorname{trace}(\mathbf{W}^T \mathbf{B}^*)}{N}$

Complexity of binarization

Optimal solution of $\min_{a \in \mathbb{R}, B_{i,j} \in \{-1,1\}} \|\mathbf{W} - \alpha \mathbf{B}\|_F^2$ is

$\mathbf{B}^* = \operatorname{sign}(\mathbf{W})$ and $\alpha^* = \frac{\operatorname{trace}(\mathbf{W}^T \mathbf{B}^*)}{N}$

• Computable in linear time in number of weights.

Complexity of binarization

What if you want to Binarize Inputs too?

• We would hope that $W * X \approx a \cdot B * Z$ where

 $\min_{a \in \mathbb{R}, B_{i,j}, Z_{i,j} \in \{-1,1\}} \|\mathbf{W} * \mathbf{X} - \alpha \mathbf{B} * \mathbf{Z}\|_F^2$

• Similar, but a bit more involved solution for this too

- How do we train?
 - Forward pass: binarize weights, and compute loss
 - <u>Backward pass</u>: replace grad of ∇ sign(w) function with $w\mathbf{1}_{|w|<1}$ and follow chain rule
 - Parameter update: use floats
- XNOR-net backprop a little trickier but similar

Backprop for BW-Net

XNOR-Net: Efficiency Experiments

Fig. 4: This figure shows the efficiency of binary convolutions in terms of memory(a) and computation(b-c). (a) is contrasting the required memory for binary and double precision weights in three different architectures (AlexNet, ResNet-18 and VGG-19). (b,c) Show speedup gained by binary convolution under (b)-different number of channels and (c)-different filter size

Alexnet on ImageNet BC and BNN SOTA at the point.

XNOR-Net: Accuracy Experiments

Classification Accuracy(%)									
I	Binary-Weight Binary-Input-Binary-Weight Full-Precisior					recision			
BWN BC[11]		XNOR-Net BI		BN	N[11]	Alex	Net[1]		
Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
56.8	79.4	35.4	61.0	44.2	69.2	27.9	50.42	56.6	80.2

Table 1: This table compares the final accuracies (Top1 - Top5) of the full precision network with our binary precision networks; Binary-Weight-Networks(BWN) and XNOR-Networks(XNOR-Net) and the competitor methods; BinaryConnect(BC) and BinaryNet(BNN).

Alexnet on ImageNet BC and BNN SOTA at the point.

XNOR-Net: Accuracy Experiments

ResNet, Top-1

ResNet-18 on ImageNet

ResNet, Top-5

XNOR-Net: Accuracy Experiment

Network Variations

Binary-Weight-Network XNOR-Network

Full-Precision-Network

ResN	et-18	GoogLenet		
top-1	top-5	top-1	top-5	
60.8	83.0	65.5	86.1	
51.2	73.2	N/A	N/A	
69.3	89.2	71.3	90.0	

_			
		ζ	
	L		

Ì

XNOR-Net: Experiments

up to 30x speedups (but not for same accuracy)

Easy to binarize algorithm

Networks suitable for edge devices

Semi-current state

Review A Review of Binarized Neural Networks

Taylor Simons^(D) and Dah-Jye Lee *(^{D)}

Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA; taylor.simons@byu.edu

* Correspondence: djlee@byu.edu; Tel.: +1-801-422-5923

Received: 14 May 2019; Accepted: 5 June 2019; Published: 12 June 2019

Methodology	Activation	Gain	Multiplicity	Regularization
Original BNN	Sign Function	None	1	None
XNOR-Net	Sign Function	Statistical	1	None
DoReFa-Net	Sign Function	Learned Param.	1	None
Tang et al.	PReLU	Inside PReLU	2	L2
ABC-Net	Sign w/Thresh.	Learned Param.	5	None
BNN+	Sign w/SS_t for STE	Learned Param.	1	L1 and L2

Table 3. Comparison of accuracies on the ImageNet dataset from works presented in this section. Full precision network accuracies are included for comparison as well.

Methodology	Topology	Top-1 Accuracy (%)	Top-5 Accuracy (%)
Original BNN	AlexNet	41.8	67.1
Original BNN	GoogleNet	47.1	69.1
XNOR-Net	AlexNet	44.2	69.2
XNOR-Net	ResNet18	51.2	73.2
DoReFa-Net	AlexNet	43.6	-
Tang et al.	51.4	75.6	
ABC-Net	ResNet18	65.0	85.9
ABC-Net	ResNet34	68.4	88.2
ABC-Net	ResNet50	76.1	92.8
BNN+	AlexNet	46.11	75.70
BNN+	ResNet18	52.64	72.98
Full Precision	AlexNet	57.1	80.2
Full Precision	GoogleNet	71.3	90.0
Full Precision	ResNet18	69.3	89.2
Full Precision	ResNet34	73.3	91.3
Full Precision	ResNet50	76.1	92.8

Recent insights

Published as a conference paper at ICLR 2019

AN EMPIRICAL STUDY OF **BINARY NEURAL NETWORKS' OPTIMISATION**

Milad Alizadeh, Javier Fernández-Marqués, Nicholas D. Lane & Yarin Gal Department of Computer Science University of Oxford

Binarizing a fully trained model helps

Table 5: Training binary models using pre-trained full-precision models for CIFAR-10 (ResNet-18) and VGG-10) and ImageNet (AlexNet-like) datasets.

	Binarisation	Best Validation Accuracy	Test Accuracy
Binary ResNet-18	end-to-end	94.40% (in epoch 457)	91.16%
	from full-precision	93.60% (in epoch 17)	91.18%
Binary VGG-10	end-to-end	89.76% (in epoch 391)	89.18%
	from full-precision	90.16% (in epoch 24)	89.32%
Binary AlexNet-like	end-to-end from full-precision	51.98% (in epoch 88) 51.85% (in epoch 30)	

Binarizing a fully trained model helps

(c) AlexNet-like on ImageNet

Figure 4: A binary model (red) is initialised from a full precision model (blue) and reaches top accuracy in a fraction of the epochs that would require to train a binary model (green) end-to-end.

Some theoretical bounds

 \approx

a neural network with high accuracy

Binary Nets can be Very Expressive

Any network can be approximated by log-bigger binary network

a larger, binary network can approximate it

$w = 0.257081639...1.. \in [-1,1]$

$w = 0.257081639...1 \in \{-1 : 1/\epsilon : 1\}$

k digits

Theorem:

Let $f(x) = \sigma(W_l \sigma(W_{l-1} \dots \sigma(W_1 x)))$ be such that $\|W_i\|_2 \leq 1$. Then, for any $\epsilon > 0$, we can replace the weights of f(x) with a finite precision truncated ones, each represented by $k = O(\log(dl/\epsilon))$ bits such that

 $\|x\| \leq 1$

 $\max \|f(x) - f_k(x)\| \le \epsilon$

Theorem: bits such that

 $||x|| \leq 1$

Proof: Let $w \in \mathcal{R}$, $|w| \leq 1$ and w_k be a finite-precision truncation of w with $O(\log(1/\delta))$ digits. Then $|w - w_k| \leq \delta$.

Let $f(x) = \sigma(W_l \sigma(W_{l-1} \dots \sigma(W_1 x)))$ be such that $\|W_i\|_2 \leq 1$. Then, for any $\epsilon > 0$, we can replace the weights of f(x) with a finite precision truncated ones, each represented by $k = O(\log(dl/\epsilon))$

 $\max \|f(x) - f_k(x)\| \le \epsilon$

Hence for a "network" $f(x) = \sigma(wx)$, we can get $f_k(x) = \sigma(w_k x)$ s.t. $\max |f(x) - f_k(x)| \le \delta$

Theorem: bits such that

 $\|x\| \leq 1$

Proof: For a single layer, we obtain $\|\sigma(Wx) - \sigma(W_k x)\| \le \|Wx - W_k\| \le d^2\delta$

Let $f(x) = \sigma(W_l \sigma(W_{l-1} \dots \sigma(W_1 x)))$ be such that $\|W_i\|_2 \leq 1$. Then, for any $\epsilon > 0$, we can replace the weights of f(x) with a finite precision truncated ones, each represented by $k = O(\log(dl/\epsilon))$

 $\max \|f(x) - f_k(x)\| \le \epsilon$

Theorem: bits such that

 $\|x\| \leq 1$

Proof: For a single layer, we obtain $\|\sigma(Wx) - \sigma(V)\|$

For two layers we have $\|W_2\sigma(W_1x) - W_{2,k}\sigma(W_{2,k}x)\| \le \|W_2y - W_{2,k}(y + \delta r)\|$ $\leq 2\delta$

Let $f(x) = \sigma(W_l \sigma(W_{l-1} \dots \sigma(W_1 x)))$ be such that $\|W_i\|_2 \leq 1$. Then, for any $\epsilon > 0$, we can replace the weights of f(x) with a finite precision truncated ones, each represented by $k = O(\log(dl/\epsilon))$

 $\max \|f(x) - f_k(x)\| \le \epsilon$

$$|W_k x)|| \le ||W x - W_k|| \le d^2 \delta$$

 $\leq \|W_2 y - W_{2,k} y\| + \|\delta W_{2,k} r\|$ $\leq \|W_2 - W_{2,k}\| \|y\| + \delta$

Theorem: bits such that

 $\|x\| \leq 1$

Proof: For *l* layers we have max $||f(x) - f_k(x)|| \le d^2 \cdot l \cdot \epsilon$ $||x|| \le 1$

Setting $\delta = \frac{\epsilon}{d^2 l}$ completes the proof

Let $f(x) = \sigma(W_l \sigma(W_{l-1} \dots \sigma(W_1 x)))$ be such that $\|W_i\|_2 \leq 1$. Then, for any $\epsilon > 0$, we can replace the weights of f(x) with a finite precision truncated ones, each represented by $k = O(\log(dl/\epsilon))$

 $\max \|f(x) - f_k(x)\| \le \epsilon$

Theorem:

Let $f(x) = \sigma(W_l \sigma(W_{l-1} \dots \sigma(W_1 x)))$ be such that $\|W_i\|_2 \leq 1$. Then, for any $\epsilon > 0$, we can replace the weights of f(x) with a finite precision truncated ones, each represented by $k = O(\log(dl/\epsilon))$ bits such that

 $\|x\| \leq 1$

 $\max \|f(x) - f_k(x)\| \le \epsilon$

$w = 0.257081639...1 \in \{-1 : 1/\epsilon : 1\}$

 $\sigma(a \cdot x)) = a \cdot \sigma(x)$

Finite precision network is equivalent to integer network

Step 2: Mapping to Integer Network

 $w = 257081639...1 \in \{-1/\epsilon : 1 : 1/\epsilon\}$

ReLus are positive homogeneous, hence for positive a

Step 3: From Integers Weights to Binary

Q: How can we build f_i using binary ReLU network?

Basic Unit

$$g_1(x) = 2 \cdot \max\{x, 0\}$$

Binary Gadgets

Replicate in Serial

 $g_i(x) = 2^i \max\{x, 0\}$

target integer weight

 $a_i \in \{-1, 0, 1\}$

Binary Gadgets

Approximate real net with finite prec

Replace finite prec with integer

reminder: this is an existence proof, not an algorithm!

Recap of proof steps

Replace each integer edge with log-bigger FC Relu

Apply on all weight and layers

Binary ReLU Nets can be Very Expressive

Any network can be approximated by $O(\log(dl/\epsilon))$ -deeper and $O(\log^2(dl/\epsilon))$ -wider binary network

 \gtrsim

a neural network with high accuracy

a larger, binary network can approximate it

Conclusion

- Binary networks can be accurate and efficient
- Training algorithms based on simple variants of backprop

Juestions

- Theoretical analysis on algorithms for training BNNs
- Network architectures amenable to binarization
- Theory for threshold+binary weights?

Reading List

Courbariaux, M., Bengio, Y. and David, J.P., 2015. Binaryconnect: Training deep neural networks with binary weights during propagations. Advances in neural information processing systems, 28.

Rastegari, M., Ordonez, V., Redmon, J. and Farhadi, A., 2016, October. Xnor-net: Imagenet classification using binary convolutional neural networks. In European conference on computer vision (pp. 525-542). Springer, Cham.

Qin, H., Gong, R., Liu, X., Bai, X., Song, J. and Sebe, N., 2020. Binary neural networks: A survey. Pattern Recognition, 105, p.107281.

Alizadeh, M., Fernández-Marqués, J., Lane, N.D. and Gal, Y., 2018, September. An empirical study of binary neural networks' optimisation. In International conference on learning representations.

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W. and Keutzer, K., 2021. A survey of quantization methods for efficient neural network inference. arXiv preprint arXiv:2103.13630.

Sreenivasan, K., Rajput, S., Sohn, J.Y. and Papailiopoulos, D., 2021. Finding Everything within Random Binary Networks. AISTATS 2022