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- Cost of Inference
- Compression

- Low-precision and Quantization



Cost of Inference

Input Convolutional ~ Pooling Fully Connected Output
Layer Layer Layer Layer Layer

2010s mantra: Deeper Is Better

- Memory: storing the model is O(#parameters)
- Computation: For each input, you do a “forward pass’”



Bigger models = Better Models!
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Size and Ops
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Operations [G-Ops]
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=== BN-NIN BN-AlexNet ResNet-50

#OPS ~ Inference time

For real-time applications,

inference time I1s important! -
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Tradeoffs

- A Good model has to:

—lave high accuracy
3e easily trainable
e fast during inference

3e compact



Model Compression

and Quantization




Deep Compression

Motivation: Large models are difficult to deploy In
resource limrted setups

Three step procedure:

* Prune weight, while training

* Quantize weights using k-means
* Compress quantized weights

[Han, Mao, Dally, ICLR 201 6]
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Deep Compression: Step |

Pruning: less number of weights

~

[ Train Connectivity ]

l
|
original : I
network | Q I
I '
|:> ! [ Prune Connections Prune |weights| <1
original ,
size | 2
I N
|
|
\

[ Train Weights

[Han, Mao, Dally, ICLR 201 6]



Deep Compression: Step 2

Quantization: less bits per weight
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Deep Compression: Step 2

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids

-0.98 0 2 3:

-0.14 cluster
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Deep Compression: Step 3

Huffman Encoding

Encode Weights
Encode Index
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Huffman Encoding
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Huffman Encoding
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Why Huffman?

A4
Huffman i1s optimal for a
symbol-by-symbol encoding
and known symbol probabilities
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Deep Compression: Experiments

Network Top-1 Error  Top-5 Error | Parameters l({?zglpress
LeNet-300-100 Ref 1.64% - 1070 KB
LeNet-300-100 Compressed | 1.58% - 27 KB 40 %
LeNet-5 Ref 0.80% - 1720 KB

LeNet-5 Compressed 0.74% - 44 KB 39 X
AlexNet Ref 42."718% 19.73% 240 MB

AlexNet Compressed 42.718% 19.70% 6.9 MB 35 X
VGG-16 Ref 31.50% 11.32% 552 MB

VGG-16 Compressed 31.17% 10.91% 11.3 MB 49 X

[Han, Mao, Dally, ICLR 201 6]



Deep Compression: Experiments

Accuracy Loss
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Model Size Ratio after Compression
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Deep Compression: Experiments
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Deep Com

B CPU Dense (Baseline) ™ CPU Pruned

100x

10x

Energy Efficiency
(normzlized to CPU)

ression: Ex

erments

GPU Dense ™ GPU Pruned ¥ TK1 Dense M TK1 Pruned

Less ops = less energy

[Han, Mao, Dally, ICLR 201 6]



Deep Compression: Experiments

Table 6: Accuracy of AlexNet with different aggressiveness of weight sharing and quantization. 8/5
bit quantization has no loss of accuracy; 8/4 bit quantization, which is more hardware friendly, has
negligible loss of accuracy of 0.01%; To be really aggressive, 4/2 bit quantization resulted in 1.99%
and 2.60% loss of accuracy.

#CONYV bits / #FC bits | Top-1 Error  Top-5 Error Tc;p—l Error Top-> Error
ncrease Increase
32bits / 32bits 42.78% 19.73% - -
8 bits / 5 bits 42.78% 19.70% 0.00% -0.03%
8 bits / 4 bits 42.79% 19.73% 0.01% 0.00%
4 bits / 2 bits 44.77% 22.33% 1.99% 2.60%

Quantized models

are accurate

[Han, Mao, Dally, ICLR 201 6]



Remarks

Several Interesting papers on model quantization and
compression, especially for edge devices/low-power HW

* [ow-rank factorization

* T[raining quantization levels

* SqueezeNets/MobileNets/ Ternary Nets/ShuffleNet

Which one Is best!?

Theory for pruned/quantized nets!

* how many weights can | throw away before | incure an
error g!

* Use of expanders!

* Sparse approximation theory!?

* Matrix Sketching?
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