Inference on Deep Networks, Model Compression and Quantization

Dimitris Papailiopoulos University of Wisconsin-Madison

Input Data

Input Data

Input Data

Today

- Cost of Inference

- Compression

- Low-precision and Quantization

Cost of Inference

- Memory: storing the model is O(#parameters)
- Computation: For each input, you do a "forward pass"

Canziani, Culurciello, Paszke, 2016]

Tradeoffs

- A Good model has to:
 - Have high accuracy
 - Be easily trainable
 - Be fast during inference
 - Be compact

Model Compression and Quantization

Deep Compression

<u>Motivation</u>: Large models are difficult to deploy in resource limited setups

Three step procedure:

- Prune weight, while training
- Quantize weights using k-means
- Compress quantized weights

Deep Compression

Deep Compression: Step 2

Quantization: less bits per weight

Deep Compression: Step 2

Huffman is optimal for a symbol-by-symbol encoding and known symbol probabilities

Deep Compression

Network	Top-1 Error	Top-5 Error	Parameters	Compress Rate
LeNet-300-100 Ref	1.64%	-	1070 KB	
LeNet-300-100 Compressed	1.58%	-	27 KB	40 imes
LeNet-5 Ref	0.80%	-	1720 KB	
LeNet-5 Compressed	0.74%	-	44 KB	39 imes
AlexNet Ref	42.78%	19.73%	240 MB	
AlexNet Compressed	42.78%	19.70%	6.9 MB	35 imes
VGG-16 Ref	31.50%	11.32%	552 MB	
VGG-16 Compressed	31.17%	10.91%	11.3 MB	49 imes

◆ Pruning + Quantization ▲ Pruning Only ○ Quantization Only ◇ SVD

Model Size Ratio after Compression

1x

1x

1.0x

VGGNet Fc7

1x

0.3x

VGGNet Fc8

1x

0.7x

1x

1x

1.0x

VGGNet Fc6

Less ops = less energy

Table 6: Accuracy of AlexNet with different aggressiveness of weight sharing and quantization. 8/5 bit quantization has no loss of accuracy; 8/4 bit quantization, which is more hardware friendly, has negligible loss of accuracy of 0.01%; To be really aggressive, 4/2 bit quantization resulted in 1.99% and 2.60% loss of accuracy.

#CONV bits / #FC bits	Top-1 Error	Top-5 Error	Top-1 Error Increase	Top-5 Error Increase
32bits / 32bits	42.78%	19.73%	-	-
8 bits / 5 bits	42.78%	19.70%	0.00%	-0.03%
8 bits / 4 bits	42.79%	19.73%	0.01%	0.00%
4 bits / 2 bits	44.77%	22.33%	1.99%	2.60%

Quantized models are accurate

Remarks

- Several interesting papers on model quantization and compression, especially for edge devices/low-power HW
 - Low-rank factorization
 - Training quantization levels
 - SqueezeNets/MobileNets/Ternary Nets/ShuffleNet
- Which one is best?
- Theory for pruned/quantized nets?
 - how many weights can I throw away before I incure an error ϵ ?
 - Use of expanders?
 - Sparse approximation theory?
 - Matrix Sketching?

The end

Reading List

- Song Han, Huizi Mao, William J. Dally, Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding. ICLR 2016
- Blalock, D., Gonzalez Ortiz, J.J., Frankle, J. and Guttag, J., 2020. What is the state of neural network pruning?. Proceedings of machine learning and systems, 2, pp. I 29- I 46.
- Tan, M. and Le, Q., 2019, May. Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105-6114). PMLR.
- landola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J. and Keutzer, K., 2016. SqueezeNet: AlexNetlevel accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360.
- Liu, Z., Sun, M., Zhou, T., Huang, G. and Darrell, T., 2018. Rethinking the value of network pruning. arXiv preprint arXiv:1810.05270.