
Dimitris Papailiopoulos
University of Wisconsin-Madison

Inference on Deep Networks,
Model Compression and
Quantization

Standard ML Pipeline

Input Data

Standard ML Pipeline

Input Data

Training

Standard ML Pipeline

Input Data

Training Model

Standard ML Pipeline

Input Data

Training Model
predicted

label:
“dog”

Test (unseen)
Data

This is called
inference

Today
- Cost of Inference

- Compression

- Low-precision and Quantization

Cost of Inference

- Memory: storing the model is O(#parameters)
- Computation: For each input, you do a “forward pass”

2010s mantra: Deeper is Better

Under review as a conference paper at ICLR 2017

Figure 1: Top1 vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
networks of the same group share the same hue, for
example ResNet are all variations of pink.

Figure 2: Top1 vs. operations, size / parameters.

Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network pa-
rameters; a legend is reported in the bottom right cor-
ner, spanning from 5⇥10

6 to 155⇥10
6 params. Both

these figures share the same y-axis, and the grey dots
highlight the centre of the blobs.

single run of VGG-161 (Simonyan & Zisserman, 2014) and GoogLeNet (Szegedy et al., 2014) are
8.70% and 10.07% respectively, revealing that VGG-16 performs better than GoogLeNet. When
models are run with 10-crop sampling,2 then the errors become 9.33% and 9.15% respectively, and
therefore VGG-16 will perform worse than GoogLeNet, using a single central-crop. For this reason,
we decided to base our analysis on re-evaluations of top-1 accuracies3 for all networks with a single
central-crop sampling technique (Zagoruyko, 2016).

For inference time and memory usage measurements we have used Torch7 (Collobert et al., 2011)
with cuDNN-v5 (Chetlur et al., 2014) and CUDA-v8 back-end. All experiments were conducted on
a JetPack-2.3 NVIDIA Jetson TX1 board (nVIDIA): an embedded visual computing system with
a 64-bit ARM R� A57 CPU, a 1 T-Flop/s 256-core NVIDIA Maxwell GPU and 4 GB LPDDR4
of shared RAM. We use this resource-limited device to better underline the differences between
network architecture, but similar results can be obtained on most recent GPUs, such as the NVIDIA
K40 or Titan X, to name a few. Operation counts were obtained using an open-source tool that we
developed (Paszke, 2016). For measuring the power consumption, a Keysight 1146B Hall effect
current probe has been used with a Keysight MSO-X 2024A 200MHz digital oscilloscope with a
sampling period of 2 s and 50 kSa/s sample rate. The system was powered by a Keysight E3645A
GPIB controlled DC power supply.

3 RESULTS

In this section we report our results and comparisons. We analysed the following DDNs: AlexNet
(Krizhevsky et al., 2012), batch normalised AlexNet (Zagoruyko, 2016), batch normalised Network
In Network (NIN) (Lin et al., 2013), ENet (Paszke et al., 2016) for ImageNet (Culurciello, 2016),
GoogLeNet (Szegedy et al., 2014), VGG-16 and -19 (Simonyan & Zisserman, 2014), ResNet-18,
-34, -50, -101 and -152 (He et al., 2015), Inception-v3 (Szegedy et al., 2015) and Inception-v4
(Szegedy et al., 2016) since they obtained the highest performance, in these four years, on the
ImageNet (Russakovsky et al., 2015) challenge.

1 In the original paper this network is called VGG-D, which is the best performing network. Here we prefer
to highlight the number of layer utilised, so we will call it VGG-16 in this publication.

2 From a given image multiple patches are extracted: four corners plus central crop and their horizontal
mirrored twins.

3 Accuracy and error rate always sum to 100, therefore in this paper they are used interchangeably.

2

Bigger models = Better Models?

[Canziani, Culurciello, Paszke, 2016]

Under review as a conference paper at ICLR 2017

Figure 1: Top1 vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
networks of the same group share the same hue, for
example ResNet are all variations of pink.

Figure 2: Top1 vs. operations, size / parameters.

Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network pa-
rameters; a legend is reported in the bottom right cor-
ner, spanning from 5⇥10

6 to 155⇥10
6 params. Both

these figures share the same y-axis, and the grey dots
highlight the centre of the blobs.

single run of VGG-161 (Simonyan & Zisserman, 2014) and GoogLeNet (Szegedy et al., 2014) are
8.70% and 10.07% respectively, revealing that VGG-16 performs better than GoogLeNet. When
models are run with 10-crop sampling,2 then the errors become 9.33% and 9.15% respectively, and
therefore VGG-16 will perform worse than GoogLeNet, using a single central-crop. For this reason,
we decided to base our analysis on re-evaluations of top-1 accuracies3 for all networks with a single
central-crop sampling technique (Zagoruyko, 2016).

For inference time and memory usage measurements we have used Torch7 (Collobert et al., 2011)
with cuDNN-v5 (Chetlur et al., 2014) and CUDA-v8 back-end. All experiments were conducted on
a JetPack-2.3 NVIDIA Jetson TX1 board (nVIDIA): an embedded visual computing system with
a 64-bit ARM R� A57 CPU, a 1 T-Flop/s 256-core NVIDIA Maxwell GPU and 4 GB LPDDR4
of shared RAM. We use this resource-limited device to better underline the differences between
network architecture, but similar results can be obtained on most recent GPUs, such as the NVIDIA
K40 or Titan X, to name a few. Operation counts were obtained using an open-source tool that we
developed (Paszke, 2016). For measuring the power consumption, a Keysight 1146B Hall effect
current probe has been used with a Keysight MSO-X 2024A 200MHz digital oscilloscope with a
sampling period of 2 s and 50 kSa/s sample rate. The system was powered by a Keysight E3645A
GPIB controlled DC power supply.

3 RESULTS

In this section we report our results and comparisons. We analysed the following DDNs: AlexNet
(Krizhevsky et al., 2012), batch normalised AlexNet (Zagoruyko, 2016), batch normalised Network
In Network (NIN) (Lin et al., 2013), ENet (Paszke et al., 2016) for ImageNet (Culurciello, 2016),
GoogLeNet (Szegedy et al., 2014), VGG-16 and -19 (Simonyan & Zisserman, 2014), ResNet-18,
-34, -50, -101 and -152 (He et al., 2015), Inception-v3 (Szegedy et al., 2015) and Inception-v4
(Szegedy et al., 2016) since they obtained the highest performance, in these four years, on the
ImageNet (Russakovsky et al., 2015) challenge.

1 In the original paper this network is called VGG-D, which is the best performing network. Here we prefer
to highlight the number of layer utilised, so we will call it VGG-16 in this publication.

2 From a given image multiple patches are extracted: four corners plus central crop and their horizontal
mirrored twins.

3 Accuracy and error rate always sum to 100, therefore in this paper they are used interchangeably.

2

Size and Ops

ResNet-152 ~ 230 MB

[Canziani, Culurciello, Paszke, 2016]

Under review as a conference paper at ICLR 2017

Figure 5: Memory vs. batch size. Maximum sys-
tem memory utilisation for batches of different sizes.
Memory usage shows a knee graph, due to the net-
work model memory static allocation and the variable
memory used by batch size.

Figure 6: Memory vs. parameters count. De-
tailed view on static parameters allocation and cor-
responding memory utilisation. Minimum memory
of 200MB, linear afterwards with slope 1.30.

Figure 7: Operations vs. inference time, size / parameters. Relationship between operations and inference
time, for batches of size 1 and 16 (biggest size for which all architectures can still run). Not surprisingly, we
notice a linear trend, and therefore operations count represent a good estimation of inference time. Furthermore,
we can notice an increase in the slope of the trend for larger batches, which correspond to shorter inference
time due to batch processing optimisation.

3.4 MEMORY

We analysed system memory consumption of the TX1 device, which uses shared memory for both
CPU and GPU. Figure 5 shows that the maximum system memory usage is initially constant and
then raises with the batch size. This is due the initial memory allocation of the network model —
which is the large static component — and the contribution of the memory required while processing
the batch, proportionally increasing with the number of images. In figure 6 we can also notice that
the initial allocation never drops below 200MB, for network sized below 100MB, and it is linear
afterwards, with respect to the parameters and a slope of 1.30.

3.5 OPERATIONS

Operations count is essential for establishing a rough estimate of inference time and hardware circuit
size, in case of custom implementation of neural network accelerators. In figure 7, for a batch of
16 images, there is a linear relationship between operations count and inference time per image.
Therefore, at design time, we can pose a constraint on the number of operation to keep processing
speed in a usable range for real-time applications or resource-limited deployments.

4

Inference time

Under review as a conference paper at ICLR 2017

Figure 3: Inference time vs. batch size. This
chart show inference time across different batch sizes
with a logarithmic ordinate and logarithmic abscissa.
Missing data points are due to lack of enough system
memory required to process larger batches. A speed
up of 3⇥ is achieved by AlexNet due to better optimi-
sation of its fully connected layers for larger batches.

Figure 4: Power vs. batch size. Net power consump-
tion (due only to the forward processing of several
DNNs) for different batch sizes. The idle power of
the TX1 board, with no HDMI screen connected, was
1.30W on average. The max frequency component
of power supply current was 1.4 kHz, corresponding
to a Nyquist sampling frequency of 2.8 kHz.

3.1 ACCURACY

Figure 1 shows one-crop accuracies of the most relevant entries submitted to the ImageNet chal-
lenge, from the AlexNet (Krizhevsky et al., 2012), on the far left, to the best performing Inception-v4
(Szegedy et al., 2016). The newest ResNet and Inception architectures surpass all other architectures
by a significant margin of at least 7%.

Figure 2 provides a different, but more informative view of the accuracy values, because it also
visualises computational cost and number of network’s parameters. The first thing that is very ap-
parent is that VGG, even though it is widely used in many applications, is by far the most expensive
architecture — both in terms of computational requirements and number of parameters. Its 16- and
19-layer implementations are in fact isolated from all other networks. The other architectures form a
steep straight line, that seems to start to flatten with the latest incarnations of Inception and ResNet.
This might suggest that models are reaching an inflection point on this data set. At this inflection
point, the costs — in terms of complexity — start to outweigh gains in accuracy. We will later show
that this trend is hyperbolic.

3.2 INFERENCE TIME

Figure 3 reports inference time per image on each architecture, as a function of image batch size
(from 1 to 64). We notice that VGG processes one image in a fifth of a second, making it a less likely
contender in real-time applications on an NVIDIA TX1. AlexNet shows a speed up of roughly 3⇥
going from batch of 1 to 64 images, due to weak optimisation of its fully connected layers. It is a
very surprising finding, that will be further discussed in the next subsection.

3.3 POWER

Power measurements are complicated by the high frequency swings in current consumption, which
required high sampling current read-out to avoid aliasing. In this work, we used a 200MHz digital
oscilloscope with a current probe, as reported in section 2. Other measuring instruments, such as
an AC power strip with 2Hz sampling rate, or a GPIB controlled DC power supply with 12Hz

sampling rate, did not provide enough bandwidth to properly conduct power measurements.

In figure 4 we see that the power consumption is mostly independent with the batch size. Low power
values for AlexNet (batch of 1) and VGG (batch of 2) are associated to slower forward times per
image, as shown in figure 3.

3

#OPS ~ Inference time

For real-time applications,
inference time is important!

[Canziani, Culurciello, Paszke, 2016]

Tradeoffs
- A Good model has to:

- Have high accuracy
- Be easily trainable
- Be fast during inference
- Be compact

Model Compression
and Quantization

Deep Compression
Motivation: Large models are difficult to deploy in
resource limited setups

Three step procedure:
• Prune weight, while training
• Quantize weights using k-means
• Compress quantized weights

[Han, Mao, Dally, ICLR 2016]

Deep Compression

[Han, Mao, Dally, ICLR 2016]

Published as a conference paper at ICLR 2016

7UDLQ�&RQQHFWLYLW\

3UXQH�&RQQHFWLRQV

7UDLQ�:HLJKWV

&OXVWHU�WKH�:HLJKWV

*HQHUDWH�&RGH�%RRN

4XDQWL]H�WKH�:HLJKWV�
ZLWK�&RGH�%RRN

5HWUDLQ�&RGH�%RRN

3UXQLQJ��OHVV�QXPEHU�RI�ZHLJKWV
4XDQWL]DWLRQ��OHVV�ELWV�SHU�ZHLJKW

RULJLQDO
���VL]H

����[���[�
UHGXFWLRQ

����[���[�
UHGXFWLRQ

���VDPH�
DFFXUDF\

���VDPH�
DFFXUDF\

RULJLQDO�
QHWZRUN

(QFRGH�:HLJKWV

(QFRGH�,QGH[

+XIIPDQ�(QFRGLQJ

����[���[�
UHGXFWLRQ

���VDPH�
DFFXUDF\

Figure 1: The three stage compression pipeline: pruning, quantization and Huffman coding. Pruning
reduces the number of weights by 10⇥, while quantization further improves the compression rate:
between 27⇥ and 31⇥. Huffman coding gives more compression: between 35⇥ and 49⇥. The
compression rate already included the meta-data for sparse representation. The compression scheme
doesn’t incur any accuracy loss.

features such as better privacy, less network bandwidth and real time processing, the large storage
overhead prevents deep neural networks from being incorporated into mobile apps.

The second issue is energy consumption. Running large neural networks require a lot of memory
bandwidth to fetch the weights and a lot of computation to do dot products— which in turn consumes
considerable energy. Mobile devices are battery constrained, making power hungry applications such
as deep neural networks hard to deploy.

Energy consumption is dominated by memory access. Under 45nm CMOS technology, a 32 bit
floating point add consumes 0.9pJ, a 32bit SRAM cache access takes 5pJ, while a 32bit DRAM
memory access takes 640pJ, which is 3 orders of magnitude of an add operation. Large networks
do not fit in on-chip storage and hence require the more costly DRAM accesses. Running a 1 billion
connection neural network, for example, at 20fps would require (20Hz)(1G)(640pJ) = 12.8W just
for DRAM access - well beyond the power envelope of a typical mobile device.

Our goal is to reduce the storage and energy required to run inference on such large networks so they
can be deployed on mobile devices. To achieve this goal, we present “deep compression”: a three-
stage pipeline (Figure 1) to reduce the storage required by neural network in a manner that preserves
the original accuracy. First, we prune the networking by removing the redundant connections, keeping
only the most informative connections. Next, the weights are quantized so that multiple connections
share the same weight, thus only the codebook (effective weights) and the indices need to be stored.
Finally, we apply Huffman coding to take advantage of the biased distribution of effective weights.

Our main insight is that, pruning and trained quantization are able to compress the network without
interfering each other, thus lead to surprisingly high compression rate. It makes the required storage
so small (a few megabytes) that all weights can be cached on chip instead of going to off-chip DRAM
which is energy consuming. Based on “deep compression”, the EIE hardware accelerator Han et al.
(2016) was later proposed that works on the compressed model, achieving significant speedup and
energy efficiency improvement.

2 NETWORK PRUNING

Network pruning has been widely studied to compress CNN models. In early work, network pruning
proved to be a valid way to reduce the network complexity and over-fitting (LeCun et al., 1989;
Hanson & Pratt, 1989; Hassibi et al., 1993; Ström, 1997). Recently Han et al. (2015) pruned state-
of-the-art CNN models with no loss of accuracy. We build on top of that approach. As shown on
the left side of Figure 1, we start by learning the connectivity via normal network training. Next, we
prune the small-weight connections: all connections with weights below a threshold are removed
from the network. Finally, we retrain the network to learn the final weights for the remaining sparse
connections. Pruning reduced the number of parameters by 9⇥ and 13⇥ for AlexNet and VGG-16
model.

2

Deep Compression: Step 1

[Han, Mao, Dally, ICLR 2016]

Published as a conference paper at ICLR 2016

7UDLQ�&RQQHFWLYLW\

3UXQH�&RQQHFWLRQV

7UDLQ�:HLJKWV

&OXVWHU�WKH�:HLJKWV

*HQHUDWH�&RGH�%RRN

4XDQWL]H�WKH�:HLJKWV�
ZLWK�&RGH�%RRN

5HWUDLQ�&RGH�%RRN

3UXQLQJ��OHVV�QXPEHU�RI�ZHLJKWV
4XDQWL]DWLRQ��OHVV�ELWV�SHU�ZHLJKW

RULJLQDO
���VL]H

����[���[�
UHGXFWLRQ

����[���[�
UHGXFWLRQ

���VDPH�
DFFXUDF\

���VDPH�
DFFXUDF\

RULJLQDO�
QHWZRUN

(QFRGH�:HLJKWV

(QFRGH�,QGH[

+XIIPDQ�(QFRGLQJ

����[���[�
UHGXFWLRQ

���VDPH�
DFFXUDF\

Figure 1: The three stage compression pipeline: pruning, quantization and Huffman coding. Pruning
reduces the number of weights by 10⇥, while quantization further improves the compression rate:
between 27⇥ and 31⇥. Huffman coding gives more compression: between 35⇥ and 49⇥. The
compression rate already included the meta-data for sparse representation. The compression scheme
doesn’t incur any accuracy loss.

features such as better privacy, less network bandwidth and real time processing, the large storage
overhead prevents deep neural networks from being incorporated into mobile apps.

The second issue is energy consumption. Running large neural networks require a lot of memory
bandwidth to fetch the weights and a lot of computation to do dot products— which in turn consumes
considerable energy. Mobile devices are battery constrained, making power hungry applications such
as deep neural networks hard to deploy.

Energy consumption is dominated by memory access. Under 45nm CMOS technology, a 32 bit
floating point add consumes 0.9pJ, a 32bit SRAM cache access takes 5pJ, while a 32bit DRAM
memory access takes 640pJ, which is 3 orders of magnitude of an add operation. Large networks
do not fit in on-chip storage and hence require the more costly DRAM accesses. Running a 1 billion
connection neural network, for example, at 20fps would require (20Hz)(1G)(640pJ) = 12.8W just
for DRAM access - well beyond the power envelope of a typical mobile device.

Our goal is to reduce the storage and energy required to run inference on such large networks so they
can be deployed on mobile devices. To achieve this goal, we present “deep compression”: a three-
stage pipeline (Figure 1) to reduce the storage required by neural network in a manner that preserves
the original accuracy. First, we prune the networking by removing the redundant connections, keeping
only the most informative connections. Next, the weights are quantized so that multiple connections
share the same weight, thus only the codebook (effective weights) and the indices need to be stored.
Finally, we apply Huffman coding to take advantage of the biased distribution of effective weights.

Our main insight is that, pruning and trained quantization are able to compress the network without
interfering each other, thus lead to surprisingly high compression rate. It makes the required storage
so small (a few megabytes) that all weights can be cached on chip instead of going to off-chip DRAM
which is energy consuming. Based on “deep compression”, the EIE hardware accelerator Han et al.
(2016) was later proposed that works on the compressed model, achieving significant speedup and
energy efficiency improvement.

2 NETWORK PRUNING

Network pruning has been widely studied to compress CNN models. In early work, network pruning
proved to be a valid way to reduce the network complexity and over-fitting (LeCun et al., 1989;
Hanson & Pratt, 1989; Hassibi et al., 1993; Ström, 1997). Recently Han et al. (2015) pruned state-
of-the-art CNN models with no loss of accuracy. We build on top of that approach. As shown on
the left side of Figure 1, we start by learning the connectivity via normal network training. Next, we
prune the small-weight connections: all connections with weights below a threshold are removed
from the network. Finally, we retrain the network to learn the final weights for the remaining sparse
connections. Pruning reduced the number of parameters by 9⇥ and 13⇥ for AlexNet and VGG-16
model.

2

SGD

Prune |weights| < t

SGD

Deep Compression: Step 2

[Han, Mao, Dally, ICLR 2016]

Published as a conference paper at ICLR 2016

7UDLQ�&RQQHFWLYLW\

3UXQH�&RQQHFWLRQV

7UDLQ�:HLJKWV

&OXVWHU�WKH�:HLJKWV

*HQHUDWH�&RGH�%RRN

4XDQWL]H�WKH�:HLJKWV�
ZLWK�&RGH�%RRN

5HWUDLQ�&RGH�%RRN

3UXQLQJ��OHVV�QXPEHU�RI�ZHLJKWV
4XDQWL]DWLRQ��OHVV�ELWV�SHU�ZHLJKW

RULJLQDO
���VL]H

����[���[�
UHGXFWLRQ

����[���[�
UHGXFWLRQ

���VDPH�
DFFXUDF\

���VDPH�
DFFXUDF\

RULJLQDO�
QHWZRUN

(QFRGH�:HLJKWV

(QFRGH�,QGH[

+XIIPDQ�(QFRGLQJ

����[���[�
UHGXFWLRQ

���VDPH�
DFFXUDF\

Figure 1: The three stage compression pipeline: pruning, quantization and Huffman coding. Pruning
reduces the number of weights by 10⇥, while quantization further improves the compression rate:
between 27⇥ and 31⇥. Huffman coding gives more compression: between 35⇥ and 49⇥. The
compression rate already included the meta-data for sparse representation. The compression scheme
doesn’t incur any accuracy loss.

features such as better privacy, less network bandwidth and real time processing, the large storage
overhead prevents deep neural networks from being incorporated into mobile apps.

The second issue is energy consumption. Running large neural networks require a lot of memory
bandwidth to fetch the weights and a lot of computation to do dot products— which in turn consumes
considerable energy. Mobile devices are battery constrained, making power hungry applications such
as deep neural networks hard to deploy.

Energy consumption is dominated by memory access. Under 45nm CMOS technology, a 32 bit
floating point add consumes 0.9pJ, a 32bit SRAM cache access takes 5pJ, while a 32bit DRAM
memory access takes 640pJ, which is 3 orders of magnitude of an add operation. Large networks
do not fit in on-chip storage and hence require the more costly DRAM accesses. Running a 1 billion
connection neural network, for example, at 20fps would require (20Hz)(1G)(640pJ) = 12.8W just
for DRAM access - well beyond the power envelope of a typical mobile device.

Our goal is to reduce the storage and energy required to run inference on such large networks so they
can be deployed on mobile devices. To achieve this goal, we present “deep compression”: a three-
stage pipeline (Figure 1) to reduce the storage required by neural network in a manner that preserves
the original accuracy. First, we prune the networking by removing the redundant connections, keeping
only the most informative connections. Next, the weights are quantized so that multiple connections
share the same weight, thus only the codebook (effective weights) and the indices need to be stored.
Finally, we apply Huffman coding to take advantage of the biased distribution of effective weights.

Our main insight is that, pruning and trained quantization are able to compress the network without
interfering each other, thus lead to surprisingly high compression rate. It makes the required storage
so small (a few megabytes) that all weights can be cached on chip instead of going to off-chip DRAM
which is energy consuming. Based on “deep compression”, the EIE hardware accelerator Han et al.
(2016) was later proposed that works on the compressed model, achieving significant speedup and
energy efficiency improvement.

2 NETWORK PRUNING

Network pruning has been widely studied to compress CNN models. In early work, network pruning
proved to be a valid way to reduce the network complexity and over-fitting (LeCun et al., 1989;
Hanson & Pratt, 1989; Hassibi et al., 1993; Ström, 1997). Recently Han et al. (2015) pruned state-
of-the-art CNN models with no loss of accuracy. We build on top of that approach. As shown on
the left side of Figure 1, we start by learning the connectivity via normal network training. Next, we
prune the small-weight connections: all connections with weights below a threshold are removed
from the network. Finally, we retrain the network to learn the final weights for the remaining sparse
connections. Pruning reduced the number of parameters by 9⇥ and 13⇥ for AlexNet and VGG-16
model.

2

K-means used
for clustering

min
S1,...,Sk

kX

i=1

X

x2Si

kx� µik2

<latexit sha1_base64="Nd2XiZro7HHwz7zpNfpSmGGuAx0=">AAACKXicbZDNSgMxFIXv+G/9q7p0ExTBRS0zdaELhaIb3SlaLXTaIZOmNTTJDElGWqZ9HTe+hA/gRkFRt76IaetCWy8EPs65l5t7wpgzbVz3w5mYnJqemZ2bzywsLi2vZFfXrnWUKEJLJOKRKodYU84kLRlmOC3HimIRcnoTtk76/s0dVZpF8sp0YloVuClZgxFsrBRki75gMkgvAy/n83pkdA5dBq0e8nUigpQdeb1aa8htn0nrMet127u+SALmd2uFILvl5t1BoXHwfmCreLZ3+AgA50H2xa9HJBFUGsKx1hXPjU01xcowwmkv4yeaxpi0cJNWLEosqK6mg0t7aNsqddSIlH3SoIH6eyLFQuuOCG2nwOZWj3p98T+vkpjGQTVlMk4MlWS4qJFwZCLUjw3VmaLE8I4FTBSzf0XkFitMjA03Y0PwRk8eh+tC3nPz3oVN4xiGNQcbsAk74ME+FOEUzqEEBO7hCV7hzXlwnp1353PYOuH8zKzDn3K+vgH09qiR</latexit><latexit sha1_base64="RY0C8dnV9UilThbFCNjlATC9ggU=">AAACKXicbZDNSsQwFIVT/53xp+rSTXAQXOjQ6kIXCoNudKfoqDCtJU0zY2iSliQVh9rXceMr+AhuFBR16xP4BmamLnT0QuDjnHu5uSdMGVXacd6soeGR0bHxiclKdWp6Ztaemz9VSSYxaeKEJfI8RIowKkhTU83IeSoJ4iEjZ2G81/PProhUNBEnupsSn6OOoG2KkTZSYDc8TkWQHwfuqseiRKtVeBzEBfRUxoOc7rjFRVzytUeF8ajxbq7XPJ4F1Lu5WA/smlN3+gX/gvsNtcbBxvb9/mf1MLCfvCjBGSdCY4aUarlOqv0cSU0xI0XFyxRJEY5Rh7QMCsSJ8vP+pQVcNkoE24k0T2jYV39O5Igr1eWh6eRIX6pBryf+57Uy3d7ycyrSTBOBy0XtjEGdwF5sMKKSYM26BhCW1PwV4kskEdYm3IoJwR08+S+crtddp+4emTR2QVkTYBEsgRXggk3QAPvgEDQBBrfgATyDF+vOerRerfeydcj6nlkAv8r6+AKgyanR</latexit><latexit sha1_base64="RY0C8dnV9UilThbFCNjlATC9ggU=">AAACKXicbZDNSsQwFIVT/53xp+rSTXAQXOjQ6kIXCoNudKfoqDCtJU0zY2iSliQVh9rXceMr+AhuFBR16xP4BmamLnT0QuDjnHu5uSdMGVXacd6soeGR0bHxiclKdWp6Ztaemz9VSSYxaeKEJfI8RIowKkhTU83IeSoJ4iEjZ2G81/PProhUNBEnupsSn6OOoG2KkTZSYDc8TkWQHwfuqseiRKtVeBzEBfRUxoOc7rjFRVzytUeF8ajxbq7XPJ4F1Lu5WA/smlN3+gX/gvsNtcbBxvb9/mf1MLCfvCjBGSdCY4aUarlOqv0cSU0xI0XFyxRJEY5Rh7QMCsSJ8vP+pQVcNkoE24k0T2jYV39O5Igr1eWh6eRIX6pBryf+57Uy3d7ycyrSTBOBy0XtjEGdwF5sMKKSYM26BhCW1PwV4kskEdYm3IoJwR08+S+crtddp+4emTR2QVkTYBEsgRXggk3QAPvgEDQBBrfgATyDF+vOerRerfeydcj6nlkAv8r6+AKgyanR</latexit><latexit sha1_base64="Wwhp1XoKfdV4Sn0cmElW8TlGpyI=">AAACKXicbZDLSgMxFIYzXmu9VV26CRbBRS0z3ehGKLpxWam9QKcdMplMG5pkhiQjLdO+jhtfxY2Com59EdPLQlsPBD7+/xxOzu/HjCpt25/Wyura+sZmZiu7vbO7t587OKyrKJGY1HDEItn0kSKMClLTVDPSjCVB3Gek4fdvJn7jgUhFI3GvhzFpc9QVNKQYaSN5ubLLqfDSqucUXBZEWhVg1euPoasS7qX0yhl3+jMeuFQYjxpvNDh3eeJRd9Qpebm8XbSnBZfBmUMezKvi5V7dIMIJJ0JjhpRqOXas2ymSmmJGxlk3USRGuI+6pGVQIE5UO51eOoanRglgGEnzhIZT9fdEirhSQ+6bTo50Ty16E/E/r5Xo8LKdUhEnmgg8WxQmDOoITmKDAZUEazY0gLCk5q8Q95BEWJtwsyYEZ/HkZaiXio5ddO7sfPl6HkcGHIMTcAYccAHK4BZUQA1g8AiewRt4t56sF+vD+pq1rljzmSPwp6zvH6Mbptk=</latexit>

Deep Compression: Step 2

[Han, Mao, Dally, ICLR 2016]

Published as a conference paper at ICLR 2016

Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.

���� ����� ���� ����

���� ����� ����� ����

����� ���� � �����

���� � ���� ����

����� ����� ���� ����

����� ���� ����� ����

����� ���� ���� ����

����� ����� ���� �����

����

����

����

�����

����� ���� ���� �����

���� ����

���� ����� ���� ����

������ ����� ����� ����

FOXVWHU

���ZHLJKWV�
����ELW�IORDW� FHQWURLGV

JUDGLHQW

� � � �

� � � �

� � � �

� � � �

FOXVWHU�LQGH[
�����ELW�XLQW�

����

����

����

�����

�����

�����

JURXS�E\

ILQH�WXQHG�
FHQWURLGV

UHGXFH

����

����

�����

�����

��

OU��

��

��

Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each

3

aka weight sharing

Deep Compression: Step 3

[Han, Mao, Dally, ICLR 2016]

Published as a conference paper at ICLR 2016

7UDLQ�&RQQHFWLYLW\

3UXQH�&RQQHFWLRQV

7UDLQ�:HLJKWV

&OXVWHU�WKH�:HLJKWV

*HQHUDWH�&RGH�%RRN

4XDQWL]H�WKH�:HLJKWV�
ZLWK�&RGH�%RRN

5HWUDLQ�&RGH�%RRN

3UXQLQJ��OHVV�QXPEHU�RI�ZHLJKWV
4XDQWL]DWLRQ��OHVV�ELWV�SHU�ZHLJKW

RULJLQDO
���VL]H

����[���[�
UHGXFWLRQ

����[���[�
UHGXFWLRQ

���VDPH�
DFFXUDF\

���VDPH�
DFFXUDF\

RULJLQDO�
QHWZRUN

(QFRGH�:HLJKWV

(QFRGH�,QGH[

+XIIPDQ�(QFRGLQJ

����[���[�
UHGXFWLRQ

���VDPH�
DFFXUDF\

Figure 1: The three stage compression pipeline: pruning, quantization and Huffman coding. Pruning
reduces the number of weights by 10⇥, while quantization further improves the compression rate:
between 27⇥ and 31⇥. Huffman coding gives more compression: between 35⇥ and 49⇥. The
compression rate already included the meta-data for sparse representation. The compression scheme
doesn’t incur any accuracy loss.

features such as better privacy, less network bandwidth and real time processing, the large storage
overhead prevents deep neural networks from being incorporated into mobile apps.

The second issue is energy consumption. Running large neural networks require a lot of memory
bandwidth to fetch the weights and a lot of computation to do dot products— which in turn consumes
considerable energy. Mobile devices are battery constrained, making power hungry applications such
as deep neural networks hard to deploy.

Energy consumption is dominated by memory access. Under 45nm CMOS technology, a 32 bit
floating point add consumes 0.9pJ, a 32bit SRAM cache access takes 5pJ, while a 32bit DRAM
memory access takes 640pJ, which is 3 orders of magnitude of an add operation. Large networks
do not fit in on-chip storage and hence require the more costly DRAM accesses. Running a 1 billion
connection neural network, for example, at 20fps would require (20Hz)(1G)(640pJ) = 12.8W just
for DRAM access - well beyond the power envelope of a typical mobile device.

Our goal is to reduce the storage and energy required to run inference on such large networks so they
can be deployed on mobile devices. To achieve this goal, we present “deep compression”: a three-
stage pipeline (Figure 1) to reduce the storage required by neural network in a manner that preserves
the original accuracy. First, we prune the networking by removing the redundant connections, keeping
only the most informative connections. Next, the weights are quantized so that multiple connections
share the same weight, thus only the codebook (effective weights) and the indices need to be stored.
Finally, we apply Huffman coding to take advantage of the biased distribution of effective weights.

Our main insight is that, pruning and trained quantization are able to compress the network without
interfering each other, thus lead to surprisingly high compression rate. It makes the required storage
so small (a few megabytes) that all weights can be cached on chip instead of going to off-chip DRAM
which is energy consuming. Based on “deep compression”, the EIE hardware accelerator Han et al.
(2016) was later proposed that works on the compressed model, achieving significant speedup and
energy efficiency improvement.

2 NETWORK PRUNING

Network pruning has been widely studied to compress CNN models. In early work, network pruning
proved to be a valid way to reduce the network complexity and over-fitting (LeCun et al., 1989;
Hanson & Pratt, 1989; Hassibi et al., 1993; Ström, 1997). Recently Han et al. (2015) pruned state-
of-the-art CNN models with no loss of accuracy. We build on top of that approach. As shown on
the left side of Figure 1, we start by learning the connectivity via normal network training. Next, we
prune the small-weight connections: all connections with weights below a threshold are removed
from the network. Finally, we retrain the network to learn the final weights for the remaining sparse
connections. Pruning reduced the number of parameters by 9⇥ and 13⇥ for AlexNet and VGG-16
model.

2

Huffman Encoding

Huffman Encoding

Huffman Encoding

Huffman Encoding

Huffman Encoding

Huffman is optimal for a
symbol-by-symbol encoding

and known symbol probabilities

Why Huffman?

Deep Compression

[Han, Mao, Dally, ICLR 2016]

Published as a conference paper at ICLR 2016

7UDLQ�&RQQHFWLYLW\

3UXQH�&RQQHFWLRQV

7UDLQ�:HLJKWV

&OXVWHU�WKH�:HLJKWV

*HQHUDWH�&RGH�%RRN

4XDQWL]H�WKH�:HLJKWV�
ZLWK�&RGH�%RRN

5HWUDLQ�&RGH�%RRN

3UXQLQJ��OHVV�QXPEHU�RI�ZHLJKWV
4XDQWL]DWLRQ��OHVV�ELWV�SHU�ZHLJKW

RULJLQDO
���VL]H

����[���[�
UHGXFWLRQ

����[���[�
UHGXFWLRQ

���VDPH�
DFFXUDF\

���VDPH�
DFFXUDF\

RULJLQDO�
QHWZRUN

(QFRGH�:HLJKWV

(QFRGH�,QGH[

+XIIPDQ�(QFRGLQJ

����[���[�
UHGXFWLRQ

���VDPH�
DFFXUDF\

Figure 1: The three stage compression pipeline: pruning, quantization and Huffman coding. Pruning
reduces the number of weights by 10⇥, while quantization further improves the compression rate:
between 27⇥ and 31⇥. Huffman coding gives more compression: between 35⇥ and 49⇥. The
compression rate already included the meta-data for sparse representation. The compression scheme
doesn’t incur any accuracy loss.

features such as better privacy, less network bandwidth and real time processing, the large storage
overhead prevents deep neural networks from being incorporated into mobile apps.

The second issue is energy consumption. Running large neural networks require a lot of memory
bandwidth to fetch the weights and a lot of computation to do dot products— which in turn consumes
considerable energy. Mobile devices are battery constrained, making power hungry applications such
as deep neural networks hard to deploy.

Energy consumption is dominated by memory access. Under 45nm CMOS technology, a 32 bit
floating point add consumes 0.9pJ, a 32bit SRAM cache access takes 5pJ, while a 32bit DRAM
memory access takes 640pJ, which is 3 orders of magnitude of an add operation. Large networks
do not fit in on-chip storage and hence require the more costly DRAM accesses. Running a 1 billion
connection neural network, for example, at 20fps would require (20Hz)(1G)(640pJ) = 12.8W just
for DRAM access - well beyond the power envelope of a typical mobile device.

Our goal is to reduce the storage and energy required to run inference on such large networks so they
can be deployed on mobile devices. To achieve this goal, we present “deep compression”: a three-
stage pipeline (Figure 1) to reduce the storage required by neural network in a manner that preserves
the original accuracy. First, we prune the networking by removing the redundant connections, keeping
only the most informative connections. Next, the weights are quantized so that multiple connections
share the same weight, thus only the codebook (effective weights) and the indices need to be stored.
Finally, we apply Huffman coding to take advantage of the biased distribution of effective weights.

Our main insight is that, pruning and trained quantization are able to compress the network without
interfering each other, thus lead to surprisingly high compression rate. It makes the required storage
so small (a few megabytes) that all weights can be cached on chip instead of going to off-chip DRAM
which is energy consuming. Based on “deep compression”, the EIE hardware accelerator Han et al.
(2016) was later proposed that works on the compressed model, achieving significant speedup and
energy efficiency improvement.

2 NETWORK PRUNING

Network pruning has been widely studied to compress CNN models. In early work, network pruning
proved to be a valid way to reduce the network complexity and over-fitting (LeCun et al., 1989;
Hanson & Pratt, 1989; Hassibi et al., 1993; Ström, 1997). Recently Han et al. (2015) pruned state-
of-the-art CNN models with no loss of accuracy. We build on top of that approach. As shown on
the left side of Figure 1, we start by learning the connectivity via normal network training. Next, we
prune the small-weight connections: all connections with weights below a threshold are removed
from the network. Finally, we retrain the network to learn the final weights for the remaining sparse
connections. Pruning reduced the number of parameters by 9⇥ and 13⇥ for AlexNet and VGG-16
model.

2

Deep Compression: Experiments

[Han, Mao, Dally, ICLR 2016]

Published as a conference paper at ICLR 2016

Table 1: The compression pipeline can save 35⇥ to 49⇥ parameter storage with no loss of accuracy.

Network Top-1 Error Top-5 Error Parameters Compress
Rate

LeNet-300-100 Ref 1.64% - 1070 KB
LeNet-300-100 Compressed 1.58% - 27 KB 40⇥
LeNet-5 Ref 0.80% - 1720 KB
LeNet-5 Compressed 0.74% - 44 KB 39⇥
AlexNet Ref 42.78% 19.73% 240 MB
AlexNet Compressed 42.78% 19.70% 6.9 MB 35⇥
VGG-16 Ref 31.50% 11.32% 552 MB
VGG-16 Compressed 31.17% 10.91% 11.3 MB 49⇥

Table 2: Compression statistics for LeNet-300-100. P: pruning, Q:quantization, H:Huffman coding.

Layer #Weights Weights%
(P)

Weight
bits
(P+Q)

Weight
bits
(P+Q+H)

Index
bits
(P+Q)

Index
bits
(P+Q+H)

Compress
rate
(P+Q)

Compress
rate
(P+Q+H)

ip1 235K 8% 6 4.4 5 3.7 3.1% 2.32%
ip2 30K 9% 6 4.4 5 4.3 3.8% 3.04%
ip3 1K 26% 6 4.3 5 3.2 15.7% 12.70%
Total 266K 8%(12⇥) 6 5.1 5 3.7 3.1% (32⇥) 2.49% (40⇥)

Table 3: Compression statistics for LeNet-5. P: pruning, Q:quantization, H:Huffman coding.

Layer #Weights Weights%
(P)

Weight
bits
(P+Q)

Weight
bits
(P+Q+H)

Index
bits
(P+Q)

Index
bits
(P+Q+H)

Compress
rate
(P+Q)

Compress
rate
(P+Q+H)

conv1 0.5K 66% 8 7.2 5 1.5 78.5% 67.45%
conv2 25K 12% 8 7.2 5 3.9 6.0% 5.28%
ip1 400K 8% 5 4.5 5 4.5 2.7% 2.45%
ip2 5K 19% 5 5.2 5 3.7 6.9% 6.13%
Total 431K 8%(12⇥) 5.3 4.1 5 4.4 3.05% (33⇥) 2.55% (39⇥)

neurons each, which achieves 1.6% error rate on Mnist. LeNet-5 is a convolutional network that
has two convolutional layers and two fully connected layers, which achieves 0.8% error rate on
Mnist. Table 2 and table 3 show the statistics of the compression pipeline. The compression rate
includes the overhead of the codebook and sparse indexes. Most of the saving comes from pruning
and quantization (compressed 32⇥), while Huffman coding gives a marginal gain (compressed 40⇥)

5.2 ALEXNET ON IMAGENET

We further examine the performance of Deep Compression on the ImageNet ILSVRC-2012 dataset,
which has 1.2M training examples and 50k validation examples. We use the AlexNet Caffe model as
the reference model, which has 61 million parameters and achieved a top-1 accuracy of 57.2% and a
top-5 accuracy of 80.3%. Table 4 shows that AlexNet can be compressed to 2.88% of its original size
without impacting accuracy. There are 256 shared weights in each CONV layer, which are encoded
with 8 bits, and 32 shared weights in each FC layer, which are encoded with only 5 bits. The relative
sparse index is encoded with 4 bits. Huffman coding compressed additional 22%, resulting in 35⇥
compression in total.

5.3 VGG-16 ON IMAGENET

With promising results on AlexNet, we also looked at a larger, more recent network, VGG-16 (Si-
monyan & Zisserman, 2014), on the same ILSVRC-2012 dataset. VGG-16 has far more convolutional
layers but still only three fully-connected layers. Following a similar methodology, we aggressively
compressed both convolutional and fully-connected layers to realize a significant reduction in the
number of effective weights, shown in Table5.

The VGG16 network as a whole has been compressed by 49⇥. Weights in the CONV layers are
represented with 8 bits, and FC layers use 5 bits, which does not impact the accuracy. The two largest
fully-connected layers can each be pruned to less than 1.6% of their original size. This reduction

6

Deep Compression: Experiments

[Han, Mao, Dally, ICLR 2016]

Published as a conference paper at ICLR 2016

Figure 6: Accuracy v.s. compression rate under different compression methods. Pruning and
quantization works best when combined.

Figure 7: Pruning doesn’t hurt quantization. Dashed: quantization on unpruned network. Solid:
quantization on pruned network; Accuracy begins to drop at the same number of quantization bits
whether or not the network has been pruned. Although pruning made the number of parameters less,
quantization still works well, or even better(3 bits case on the left figure) as in the unpruned network.

Figure 8: Accuracy of different initialization methods. Left: top-1 accuracy. Right: top-5 accuracy.
Linear initialization gives best result.

The first two plots in Figure 7 show that CONV layers require more bits of precision than FC layers.
For CONV layers, accuracy drops significantly below 4 bits, while FC layer is more robust: not until
2 bits did the accuracy drop significantly.

6.2 CENTROID INITIALIZATION

Figure 8 compares the accuracy of the three different initialization methods with respect to top-1
accuracy (Left) and top-5 accuracy (Right). The network is quantized to 2 ⇠ 8 bits as shown on
x-axis. Linear initialization outperforms the density initialization and random initialization in all
cases except at 3 bits.

The initial centroids of linear initialization spread equally across the x-axis, from the min value to the
max value. That helps to maintain the large weights as the large weights play a more important role
than smaller ones, which is also shown in network pruning Han et al. (2015). Neither random nor
density-based initialization retains large centroids. With these initialization methods, large weights are
clustered to the small centroids because there are few large weights. In contrast, linear initialization
allows large weights a better chance to form a large centroid.

8

Pruning + quantization
is best

Deep Compression: Experiments

[Han, Mao, Dally, ICLR 2016]

Published as a conference paper at ICLR 2016

Figure 9: Compared with the original network, pruned network layer achieved 3⇥ speedup on CPU,
3.5⇥ on GPU and 4.2⇥ on mobile GPU on average. Batch size = 1 targeting real time processing.
Performance number normalized to CPU.

Figure 10: Compared with the original network, pruned network layer takes 7⇥ less energy on CPU,
3.3⇥ less on GPU and 4.2⇥ less on mobile GPU on average. Batch size = 1 targeting real time
processing. Energy number normalized to CPU.

6.3 SPEEDUP AND ENERGY EFFICIENCY

Deep Compression is targeting extremely latency-focused applications running on mobile, which
requires real-time inference, such as pedestrian detection on an embedded processor inside an
autonomous vehicle. Waiting for a batch to assemble significantly adds latency. So when bench-
marking the performance and energy efficiency, we consider the case when batch size = 1. The cases
of batching are given in Appendix A.

Fully connected layer dominates the model size (more than 90%) and got compressed the most by
Deep Compression (96% weights pruned in VGG-16). In state-of-the-art object detection algorithms
such as fast R-CNN (Girshick, 2015), upto 38% computation time is consumed on FC layers on
uncompressed model. So it’s interesting to benchmark on FC layers, to see the effect of Deep
Compression on performance and energy. Thus we setup our benchmark on FC6, FC7, FC8 layers of
AlexNet and VGG-16. In the non-batched case, the activation matrix is a vector with just one column,
so the computation boils down to dense / sparse matrix-vector multiplication for original / pruned
model, respectively. Since current BLAS library on CPU and GPU doesn’t support indirect look-up
and relative indexing, we didn’t benchmark the quantized model.

We compare three different off-the-shelf hardware: the NVIDIA GeForce GTX Titan X and the Intel
Core i7 5930K as desktop processors (same package as NVIDIA Digits Dev Box) and NVIDIA Tegra
K1 as mobile processor. To run the benchmark on GPU, we used cuBLAS GEMV for the original
dense layer. For the pruned sparse layer, we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse matrix-vector multiplication on GPU. To
run the benchmark on CPU, we used MKL CBLAS GEMV for the original dense model and MKL
SPBLAS CSRMV for the pruned sparse model.

To compare power consumption between different systems, it is important to measure power at a
consistent manner (NVIDIA, b). For our analysis, we are comparing pre-regulation power of the
entire application processor (AP) / SOC and DRAM combined. On CPU, the benchmark is running on
single socket with a single Haswell-E class Core i7-5930K processor. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel. For GPU, we used nvidia-smi
utility to report the power of Titan X. For mobile GPU, we use a Jetson TK1 development board and
measured the total power consumption with a power-meter. We assume 15% AC to DC conversion
loss, 85% regulator efficiency and 15% power consumed by peripheral components (NVIDIA, a) to
report the AP+DRAM power for Tegra K1.

9

Published as a conference paper at ICLR 2016

Figure 9: Compared with the original network, pruned network layer achieved 3⇥ speedup on CPU,
3.5⇥ on GPU and 4.2⇥ on mobile GPU on average. Batch size = 1 targeting real time processing.
Performance number normalized to CPU.

Figure 10: Compared with the original network, pruned network layer takes 7⇥ less energy on CPU,
3.3⇥ less on GPU and 4.2⇥ less on mobile GPU on average. Batch size = 1 targeting real time
processing. Energy number normalized to CPU.

6.3 SPEEDUP AND ENERGY EFFICIENCY

Deep Compression is targeting extremely latency-focused applications running on mobile, which
requires real-time inference, such as pedestrian detection on an embedded processor inside an
autonomous vehicle. Waiting for a batch to assemble significantly adds latency. So when bench-
marking the performance and energy efficiency, we consider the case when batch size = 1. The cases
of batching are given in Appendix A.

Fully connected layer dominates the model size (more than 90%) and got compressed the most by
Deep Compression (96% weights pruned in VGG-16). In state-of-the-art object detection algorithms
such as fast R-CNN (Girshick, 2015), upto 38% computation time is consumed on FC layers on
uncompressed model. So it’s interesting to benchmark on FC layers, to see the effect of Deep
Compression on performance and energy. Thus we setup our benchmark on FC6, FC7, FC8 layers of
AlexNet and VGG-16. In the non-batched case, the activation matrix is a vector with just one column,
so the computation boils down to dense / sparse matrix-vector multiplication for original / pruned
model, respectively. Since current BLAS library on CPU and GPU doesn’t support indirect look-up
and relative indexing, we didn’t benchmark the quantized model.

We compare three different off-the-shelf hardware: the NVIDIA GeForce GTX Titan X and the Intel
Core i7 5930K as desktop processors (same package as NVIDIA Digits Dev Box) and NVIDIA Tegra
K1 as mobile processor. To run the benchmark on GPU, we used cuBLAS GEMV for the original
dense layer. For the pruned sparse layer, we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse matrix-vector multiplication on GPU. To
run the benchmark on CPU, we used MKL CBLAS GEMV for the original dense model and MKL
SPBLAS CSRMV for the pruned sparse model.

To compare power consumption between different systems, it is important to measure power at a
consistent manner (NVIDIA, b). For our analysis, we are comparing pre-regulation power of the
entire application processor (AP) / SOC and DRAM combined. On CPU, the benchmark is running on
single socket with a single Haswell-E class Core i7-5930K processor. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel. For GPU, we used nvidia-smi
utility to report the power of Titan X. For mobile GPU, we use a Jetson TK1 development board and
measured the total power consumption with a power-meter. We assume 15% AC to DC conversion
loss, 85% regulator efficiency and 15% power consumed by peripheral components (NVIDIA, a) to
report the AP+DRAM power for Tegra K1.

9

Less ops = faster inference

Deep Compression: Experiments

[Han, Mao, Dally, ICLR 2016]

Less ops = less energy

Published as a conference paper at ICLR 2016

Figure 9: Compared with the original network, pruned network layer achieved 3⇥ speedup on CPU,
3.5⇥ on GPU and 4.2⇥ on mobile GPU on average. Batch size = 1 targeting real time processing.
Performance number normalized to CPU.

Figure 10: Compared with the original network, pruned network layer takes 7⇥ less energy on CPU,
3.3⇥ less on GPU and 4.2⇥ less on mobile GPU on average. Batch size = 1 targeting real time
processing. Energy number normalized to CPU.

6.3 SPEEDUP AND ENERGY EFFICIENCY

Deep Compression is targeting extremely latency-focused applications running on mobile, which
requires real-time inference, such as pedestrian detection on an embedded processor inside an
autonomous vehicle. Waiting for a batch to assemble significantly adds latency. So when bench-
marking the performance and energy efficiency, we consider the case when batch size = 1. The cases
of batching are given in Appendix A.

Fully connected layer dominates the model size (more than 90%) and got compressed the most by
Deep Compression (96% weights pruned in VGG-16). In state-of-the-art object detection algorithms
such as fast R-CNN (Girshick, 2015), upto 38% computation time is consumed on FC layers on
uncompressed model. So it’s interesting to benchmark on FC layers, to see the effect of Deep
Compression on performance and energy. Thus we setup our benchmark on FC6, FC7, FC8 layers of
AlexNet and VGG-16. In the non-batched case, the activation matrix is a vector with just one column,
so the computation boils down to dense / sparse matrix-vector multiplication for original / pruned
model, respectively. Since current BLAS library on CPU and GPU doesn’t support indirect look-up
and relative indexing, we didn’t benchmark the quantized model.

We compare three different off-the-shelf hardware: the NVIDIA GeForce GTX Titan X and the Intel
Core i7 5930K as desktop processors (same package as NVIDIA Digits Dev Box) and NVIDIA Tegra
K1 as mobile processor. To run the benchmark on GPU, we used cuBLAS GEMV for the original
dense layer. For the pruned sparse layer, we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse matrix-vector multiplication on GPU. To
run the benchmark on CPU, we used MKL CBLAS GEMV for the original dense model and MKL
SPBLAS CSRMV for the pruned sparse model.

To compare power consumption between different systems, it is important to measure power at a
consistent manner (NVIDIA, b). For our analysis, we are comparing pre-regulation power of the
entire application processor (AP) / SOC and DRAM combined. On CPU, the benchmark is running on
single socket with a single Haswell-E class Core i7-5930K processor. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel. For GPU, we used nvidia-smi
utility to report the power of Titan X. For mobile GPU, we use a Jetson TK1 development board and
measured the total power consumption with a power-meter. We assume 15% AC to DC conversion
loss, 85% regulator efficiency and 15% power consumed by peripheral components (NVIDIA, a) to
report the AP+DRAM power for Tegra K1.

9

Deep Compression: Experiments

[Han, Mao, Dally, ICLR 2016]

Quantized models
are accurate

Published as a conference paper at ICLR 2016

Table 6: Accuracy of AlexNet with different aggressiveness of weight sharing and quantization. 8/5
bit quantization has no loss of accuracy; 8/4 bit quantization, which is more hardware friendly, has
negligible loss of accuracy of 0.01%; To be really aggressive, 4/2 bit quantization resulted in 1.99%
and 2.60% loss of accuracy.

#CONV bits / #FC bits Top-1 Error Top-5 Error Top-1 Error
Increase

Top-5 Error
Increase

32bits / 32bits 42.78% 19.73% - -
8 bits / 5 bits 42.78% 19.70% 0.00% -0.03%
8 bits / 4 bits 42.79% 19.73% 0.01% 0.00%
4 bits / 2 bits 44.77% 22.33% 1.99% 2.60%

The ratio of memory access over computation characteristic with and without batching is different.
When the input activations are batched to a matrix the computation becomes matrix-matrix multipli-
cation, where locality can be improved by blocking. Matrix could be blocked to fit in caches and
reused efficiently. In this case, the amount of memory access is O(n2), and that of computation is
O(n3), the ratio between memory access and computation is in the order of 1/n.

In real time processing when batching is not allowed, the input activation is a single vector and the
computation is matrix-vector multiplication. In this case, the amount of memory access is O(n2), and
the computation is O(n2), memory access and computation are of the same magnitude (as opposed
to 1/n). That indicates MV is more memory-bounded than MM. So reducing the memory footprint
is critical for the non-batching case.

Figure 9 illustrates the speedup of pruning on different hardware. There are 6 columns for each
benchmark, showing the computation time of CPU / GPU / TK1 on dense / pruned network. Time is
normalized to CPU. When batch size = 1, pruned network layer obtained 3⇥ to 4⇥ speedup over the
dense network on average because it has smaller memory footprint and alleviates the data transferring
overhead, especially for large matrices that are unable to fit into the caches. For example VGG16’s
FC6 layer, the largest layer in our experiment, contains 25088⇥ 4096⇥ 4 Bytes ⇡ 400MB data,
which is far from the capacity of L3 cache.

In those latency-tolerating applications , batching improves memory locality, where weights could
be blocked and reused in matrix-matrix multiplication. In this scenario, pruned network no longer
shows its advantage. We give detailed timing results in Appendix A.

Figure 10 illustrates the energy efficiency of pruning on different hardware. We multiply power
consumption with computation time to get energy consumption, then normalized to CPU to get
energy efficiency. When batch size = 1, pruned network layer consumes 3⇥ to 7⇥ less energy over
the dense network on average. Reported by nvidia-smi, GPU utilization is 99% for both dense
and sparse cases.

6.4 RATIO OF WEIGHTS, INDEX AND CODEBOOK

Pruning makes the weight matrix sparse, so extra space is needed to store the indexes of non-zero
elements. Quantization adds storage for a codebook. The experiment section has already included
these two factors. Figure 11 shows the breakdown of three different components when quantizing
four networks. Since on average both the weights and the sparse indexes are encoded with 5 bits,
their storage is roughly half and half. The overhead of codebook is very small and often negligible.

Figure 11: Storage ratio of weight, index and codebook.

10

Remarks
• Several interesting papers on model quantization and
compression, especially for edge devices/low-power HW
• Low-rank factorization
• Training quantization levels
• SqueezeNets/MobileNets/Ternary Nets/ShuffleNet

• Which one is best?

• Theory for pruned/quantized nets?
• how many weights can I throw away before I incure an
error ε?

• Use of expanders?
• Sparse approximation theory?
• Matrix Sketching?

The end

Reading List
- Song Han, Huizi Mao, William J. Dally, Deep Compression: Compressing Deep Neural Network with

Pruning, Trained Quantization and Huffman Coding. ICLR 2016

- Blalock, D., Gonzalez Ortiz, J.J., Frankle, J. and Guttag, J., 2020. What is the state of neural network
pruning?. Proceedings of machine learning and systems, 2, pp.129-146.

- Tan, M. and Le, Q., 2019, May. Efficientnet: Rethinking model scaling for convolutional neural networks. In
International conference on machine learning (pp. 6105-6114). PMLR.

- Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J. and Keutzer, K., 2016. SqueezeNet: AlexNet-
level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360.

- Liu, Z., Sun, M., Zhou, T., Huang, G. and Darrell, T., 2018. Rethinking the value of network pruning. arXiv
preprint arXiv:1810.05270.

