Serially Equivalent + Scalable Parallel Machine Learning

loday

- Serial Equivalence

- Beyond Hogwild
- How much asynchrony is possible?

- Open Problems

Single Machine, Multi-core

(Maximally) Asynchronous

Serial Equialence

$$A_{\text{serial}}(S,\pi) = A_{\text{parallel}}(S,\pi)$$

For all Data sets S For all data order π (data points can be arbitrarily repeated)

<u>Main advantage:</u> - we only need to "prove" speedups - Convergence proofs inherited directly from serial

<u>Main Issue:</u>

- Serial equivalence too strict

- Cannot guarantee any speedups in the general case

The Stochastic Updates Meta-algorithm

Stochastic Updates

Algorithm 1 Stochastic Updates pseudo-algorithm

- 1: Input: \mathbf{x} ; f_1, \ldots, f_n ; u_1, \ldots, u_n ; \mathcal{D} ; T.
- 2: for t = 1 : T do
- 3: sample $i \sim D$
- 4: $\mathbf{x}_{\mathcal{S}_i} = u_i(\mathbf{x}_{\mathcal{S}_i}, f_i)$ //update global model on \mathcal{S}_i
- 5: **Output: x**

What does this solve?

Stochastic Updates: A family of ML Algorithms

Many algorithms with sparse access patterns:

- SGD

- SVRG / SAGA
- Matrix Factorization
 - word2vec
 - K-means
 - Stochastic PCA
 - Graph Clustering

. . .

Data points Variables

Can we parallelize under Serial Equivalence?

A graph view of Conflicts in Parallel Updates

The Update Conflict Graph

An edge between 2 updates if they overlap

Lemma: Sample less than $P \leq (1-\epsilon) \frac{n}{\Delta_{\rm G}}$ vertices (with/without replacement)

Lemma: Sample less than $P \leq (1-\epsilon) \frac{n}{\Delta_{\rm G}}$ vertices (with/without replacement)

Then, the induced sub-graph shatters

Lemma: Sample less than $P \leq (1-\epsilon) \frac{n}{\Delta_{\rm G}}$ vertices (with/without replacement)

Then, the induced sub-graph shatters, The largest connected component has size

$$O\left(\frac{\log n}{\epsilon^2}\right)$$

Even if the Graph was a Single Huge Conflict Component!

Building a Parallelization Framework out of a Single Theorem

Sample $B = (1 - \epsilon) \cdot \frac{n}{\Delta}$ vertices

Sample $B = (1 - \epsilon) \cdot \frac{n}{\Delta}$ vertices

Sample $B = (1 - \epsilon) \cdot \frac{n}{\Delta}$ vertices Compute Conn. Components NOTE: No conflicts **across** groups!

Max Conn. Comp = logn => $n/(\Delta logn)$ tiny components

Yay! Good for parallelization

No conflicts across groups = we can run Stochastic Updates on each of them in parallel!

Cores < Batch size / logn = $n/(\Delta logn)$

Cores < Batch size / logn = $n/(\Delta logn)$

A Single Rule: Run the updates serially inside each connected component Automatically Satisfied since we give each **conflict group** to a single core.

Policy I: Random allocation, good when cores << Batch size Policy II: Greedy min-weight allocation (80% as good as optimal (which is NP-hard))

A Single Rule: Run the updates serially inside each connected component Automatically Satisfied since we give each **conflict group** to a single core.

Each core runs Asynchronously and Lock-free! (No communication!)

Algorithm 2 CYCLADES

- 1: Input: G_u, T, B .
- 2: Sample $n_b = T/B$ subgraphs $G_u^1, \ldots, G_u^{n_b}$ from G_u
- 3: Cores compute in parallel CCs for sampled subgraphs
- 4: for batch $i = 1 : n_b$ do
- 5: Allocation of $C_1^i, \ldots C_{m_i}^i$ to *P* cores
- 6: **for** each core **in parallel do** 7: **for** each allocated component C **do** 8: **for** each update j (in order) from C **do** 9: $\mathbf{x}_{S_j} = u_j(\mathbf{x}_{S_j}, f_j)$

10: **Output: x**

This guarantees Serially Equivalence But does it guarantee speedups?

Theorem 4. Let us assume any given update-variable graph G_u with average, and max left degree $\overline{\Delta}_L$ and Δ_L , such that $\frac{\Delta_L}{\Delta_L} \leq \sqrt{n}$, and with induced max conflict degree Δ . Then, CYCLADES on $P = O(\frac{n}{\Delta \cdot \Delta_L})$ cores, with batch sizes $B = (1 - \epsilon) \frac{n}{\Delta}$ can execute $T = c \cdot n$ updates, for any constant $c \geq 1$, selected uniformly at random with replacement, in time

$$\mathcal{O}\left(\frac{E_u \cdot \kappa}{P} \cdot \log^2 n\right), \quad \blacksquare \quad \text{Speedup} = \frac{P}{\log^2 n}$$

with high probability.

Assumptions:

- 1) Not too large max degree (approximate "regularity")
- 2) Not too many cores
- 3) Sampling according to the "Graph Theorem"

Phase I

Phase II

Phase III

Identical performance as serial for SGD SVRG / SAGA Sparse Network training Matrix Factorization Word2Vec Matrix Completion - Greedy Clustering

If you have the conflict graph CC is easy... O(Sampled Edges) Building the conflict graph requires n^2 time...

No, thanks.

Sample on the Bipartite, not on the Conflict Graphs

Simple Message passing Idea

-Gradients send their IDs

-Coordinates Compute Min and Send Back

-Gradients Compute Min and Send Back Iterate till you're done

Simple Message passing Idea

-Gradients send their IDs

-Coordinates Compute Min and Send Back

-Gradients Compute Min and Send Back Iterate till you're done

$$Cost = O(\frac{E_u \log^2 n}{P})$$

Same assumptions as main theorem

Proof of "The Theorem"

TheTheorem

<u>Lemma:</u>

Activate each vertex with probability $p = (1-\epsilon) / \Delta$

Then, the induced subgraph shatters, and the largest connected component has size

$$\frac{4}{\epsilon^2} \cdot \log n$$

Probabilistic DFS

- Flip a coin for each vertex DFS wants to visit
- If I visit, if 0 don't visit and delete with its edges

- Flip a coin for each vertex DFS wants to visit
- If I visit, if 0 don't visit and delete with its edges

- Flip a coin for each vertex DFS wants to visit
- If I visit, if 0 don't visit and delete with its edges

- Flip a coin for each vertex DFS wants to visit
- If I visit, if 0 don't visit and delete with its edges

- Flip a coin for each vertex DFS wants to visit
- If I visit, if 0 don't visit and delete with its edges

- Flip a coin for each vertex DFS wants to visit
- If I visit, if 0 don't visit and delete with its edges

- Flip a coin for each vertex DFS wants to visit
- If I visit, if 0 don't visit and delete with its edges

- Flip a coin for each vertex DFS wants to visit
- If I visit, if 0 don't visit and delete with its edges

- Flip a coin for each vertex DFS wants to visit
- If I visit, if 0 don't visit and delete with its edges

- Flip a coin for each vertex DFS wants to visit
- If I visit, if 0 don't visit and delete with its edges

- Flip a coin for each vertex DFS wants to visit
- If I visit, if 0 don't visit and delete with its edges

A Little extra trickery to turn this statement to a with or without replacement Theorem.

- Say I have a connected component of size k

- #random coins flipped "associated" to that component <= k * Δ - Since I have a size k component it means that I had the event "at least k coins are "ON" in a set of k * Δ coins"

 $(n - kd + 1)Pr[B(kd, p) \ge k] < n \cdot e^{-\frac{\epsilon^2}{3}(1 - \epsilon)k} < n \cdot e^{-\frac{\epsilon^2(1 - \epsilon)}{3}\frac{4}{\epsilon^2}\ln n} = 0$

Is Max.Degree really an issue?

High Degree Vertices (outliers)

Say we have a graph with a low-degree component + some high degree vertices

High Degree Vertices (outliers)

<u>Lemma:</u>

If you sample uniformly less than $P \leq (1 - \epsilon) \frac{\pi}{\Delta_G}$ vertices Then, the induced subgraph of the low-degree (!) part shatters, and the largest connected component has size (whp)

 $\frac{4}{\epsilon^2} \cdot \log n$ Δ_G is the max degree is the low-degree subgraph

Lemma 7. Let us assume that there are $O(n^{\delta})$ outlier vertices in the original conflict graph G with degree at most Δ_o , and let the remaining vertices have degree (induced on the remaining graph) at most Δ . Let the induced update-variable graph on these low degree vertices abide to the same graph assumptions as those of Theorem 4. Moreover, let the batch size be bounded as

$$B \le \min\left\{(1-\epsilon)\frac{n-O(n^{\delta})}{\Delta}, \ O\left(\frac{n^{1-\delta}}{P}\right)\right\}.$$

Then, the expected runtime of CYCLADES will be $O\left(\frac{E_u \cdot \kappa}{P} \cdot \log^2 n\right)$.

Experiments

Implementation in C++ Experiments on Intel Xeon CPU E7-8870 v3 ITB RAM

	Dataset	# datapoints	# features	Density (average number of features per datapoint)	
SAGA	NH2010	48,838	48,838	4.8026	
SVRG	DBLP	5,425,964	5,425,964	3.1880	
L2-SGD	MovieLens	~10M	82,250	200	
SGD	EN-Wiki	20,207,156	213,272	200	

Full asynchronous (Hogwild!) vs CYCLADES

Speedups

Convergence

Least Squares SAGA I 6 threads

Open Problems

Assumptions:

Sparsity is Key

O.P.:

Can we handle Dense Data?

O.P. : Data sparsification for f(<a,x>) problems?

maybe... We can relax serial equivalence to an ''expected'' one?

Open Problems

Asynchronous algorithms great for Shared Memory Systems

- Similar Issues for Distributed:

O.P. : What is the right ML Paradigm for Distributed? CYCLADES

a framework for Parallel Sparse ML algorithms
- Lock-free + (maximally) Asynchronous

- No Conflicts

- Serializable

- Black-box analysis

NextTime

- Communication Bottlenecks

- Compressed Gradients

- Quantization

Reading List

- Krivelevich, M., 2014. The phase transition in site percolation on pseudo-random graphs. arXiv preprint arXiv:1404.5731.
- Pan, X., Lam, M., Tu, S., Papailiopoulos, D., Zhang, C., Jordan, M.I., Ramchandran, K. and Ré, C., 2016. Cyclades: Conflict-free asynchronous machine learning. Advances in Neural Information Processing Systems, 29.
- Pan, X., Papailiopoulos, D., Oymak, S., Recht, B., Ramchandran, K. and Jordan, M.I., 2015. Parallel correlation clustering on big graphs. Advances in Neural Information Processing Systems, 28.