Lifting Synchronization Barriers

FCE 826
Dimitris Papalliopoulos

loday

- Stragglers in Synchronous Distributed
Optimization

- Lifting Synchronization Barriers

- HogWild!

Stochastic Gracient Descent

mm — g ((W;z;)
loss for data point |

- |dea (‘505,‘605 [Robbins, Monro], [Widrow, Hoﬁ‘]):
Sample a data point + locally optimize.,

SGD: An Uber-algorithm

Wii1 = Wi — 7 - VA(Wg; Z;,)

Stochastic Gradient Descent

SGD can take years on large nlp models even on a
single high end GPU

Goal.
Speed up Machine Learning

Scaling Up 5GD

Synchronous computation

master node
(parameter server)

Algorithm of choice: minibatch SGD

master node
(parameter server)

worker | worker 2 worker P

Algorithm of choice: minibatch SGD

master node

(parameter server)
Stores the model

- e

worker | worker 2 worker P

Gradient Computations

Algorithm of choice: minibatch SGD

master node
(parameter server)

ﬁ?w

g0 @

worker | worker 2 worker P

Algorithm of choice: minibatch SGD

master node
(parameter server)

W |
B = batch size,

gradients / iteration

g9 @

worker | worker 2 worker P

= > VI (xi,5:); W) gp = Z VI((%4,9:); W)

1€Sq 1€ESp

Algorithm of choice: minibatch SGD

master node
(parameter server)

worker | worker 2 worker P

Algorithm of choice: minibatch SGD

master node
(parameter server)

ﬁi wW=w— vzgz

g9 @

worker | worker 2 worker P

Algorithm of choice: minibatch SGD

Repeat distributed rterations until
we are happy with the model

Large-scale Distributed Machine Learning Systems

Storage Communication Computation

Data > Distributed
Data Storage

T

“The scale and complexity of modern Web services
make it infeasible to eliminate all latency variability.”

Network Aggregator

Jeff Dean, Google.

Stragglers

* |deal compute time per node ~ O(total_time/P)

 But there is a lot of randomness:

Network/Comm Delays
Node/HW Fallures
Resource Sharing

* What Iif time per node Is a random variable:
X = constant + Exp(A)

Lemma: Remark:
1 Slowest node Is

log(n) times slower
than fastest

Simulation

« X(t) = I+ Exp(0.5),n = 10, 100, 1000, 1000

6 . .
n =10 n = 100

Straggler issue:

leads to slower mini-batch SGD
Implementations

> > -

Eal |

+ + 5|
o l

]

200 400 600 800 1000 20004000 6000 800010000

t-th compute node t-th compute node

Bottleneck: Straggling Learners

88-L¥87600-TWY
: 88-L¥87600- TNV
88-/t87600-TNY
88-L¥87600- TNV

? 4
88-/87600-TWY

Iteration Completion Time per worker \
Data set = CIFAR-10

t2.small EC2 instances . =
; 148 worker nodes, 1 parameter server : oy
F‘ CPU ¢
09} 4 g 5
median SaH-ALLPA
?08' runtime B EEFEEEEEEEEE
Vo7t |
=
.= 0.6} 99.5% 100% ¥ b _F Hd' b d Ml_
= rustime runtisne we robustity distripute
S 05} i
| |
oat ! against stragglers?
803t <22z 1
=
L 6 i
n, 0.2 SR R > " iE _______ -
0.1} g

05 Jrzlo — 5 " ™ Measured on Amazon AWS
T (cnn)

A case against Synchronization

overheads

timeline
>
CPU |
A\
CPU 2
A S~
cPus T T ~~
---------------------- : \\\ ’_—’A
s\:",/
stragglers

Asynchronous World

CPU |
CPU 2
CPU 3

Faster

>
Easier to
Implement

Asynchronous SGD on Sparse

Functions

SGD on sparse functions

f(:lj‘) — Zfe(xe)

ec&

* Def:
Hyperedge € = the subset of variables that f, depends on

* The function-variable graph

f Matrix Fact/Comp.
e1

>- I Graph cuts

Jea ® Graph/text Classification

Topic Modeling
Dropout

fen \.
Ld

SG

Data points Model

Sample S

D on sparse functions

Step |:
Pick random data point

SGD on sparse functions

Data points Model

Read

Step 2:
Read Variables

SG

Data points Model

Compute grad.
of local loss

Vfoi (@)

D on sparse functions

Step3:
Compute local function

SGD on sparse functions

Data points Model

Update Model

T x— - Vs ()

Step4:
Update Model

Parallelizing Sparse SGD on shared

memory architectures

Single Machine, Multi-core

0
5
-
-
=

)
q

L1 Cache L1 Cache

L2 Cache L2 Cache

L2 Cache

Challenges in Parallel SGD

data points shared variables

No conflict =>
2 parallel iterations = 2 serial iterations

Challenges in Parallel SGD

data points shared variables

No conflict => Speedup

Challenges in Parallel SGD

data points shared variables

What should we do for conflicts?
Approach |: Coordinate or Lock
Approach 2: Don't Care (Lock-free Async.)

Prior to 20| | Work

Long line of theoretical work since the 60s

[Chazan, Miranker, 1969]

Foundational work on Asynchronous Optimization

Master/Worker model [Tsitsiklis, Bertsekas, 1986, 1989]

Recent hardware/software advances renewed the interest

Round-robin approach [Zinkevich, Langford, Smola, 2009]
Average Runs [Zinkevich et al,, 2009],
Average Gradients [Duchi et al, Dekel et al. 2010]

Many based on “Coordinate™ or “Lock’” approach ilQ}

Why Coordinate or Lock!
[ssue: Synchronization and comm. overheads

HOGWVILD! w1

“Run parallel lock-free SGD without synchronization”

,i,. |

Re

Wright

Each processor in parallel 5

SVM RCVI (10 cores)

al —Hogwild
sample function f; -
x = read shared memory §3 \\\\\\\\\\\\\\\
o, S .
g=—7Vii(z) g1 ..
for v in the support of f do o= |
To = Tv 1 Go % 2 4 6 8 10
Number of Splits
Impact

Google Downpour SGD, & Microsoft Project Adam use HOGWILD!
Renewed interest on async. optimization

Challenges in Analysis

Challenges in Hogwild!

Shared Memory

Processor |

Issues:
|. updates can be old
2. results can overwritten

Processor 2 @

Processor P @

Incompatible with classic SGD analysis

How to Analyze Hogwild!

* Measure of performance

bound on #iter of SGD to €
bound on #iter of Parallel SGD to €

worst case speedup =

Goal of a Hogwild Analysis

Prove that Parallel SGD and Serial SGD have similar
convergence rates for given number of samples

Assumption:
random sampling of gradients yields a nearly optimal load balance
(if number of cores not too many)

How to Analyze Hogwild!

- [Niu, Recht, Re, and Wright, 201 |] the first analysis of Hogwild! Issues:

- many impractical assumptions
- simplified read/write model

[consistent reads, single coordinate updates, ... |
- lengthy derivations

- Many Async. algorithms follow using similar assumptions, and/or analysis:
[Duchi et al, 201 1], [Liu et al, 2014, 2015], [Avron et al. 201 4],

[De Sa et al, 2015], [Lian et al,, 2015], [Peng et al., 2015]

How to Analyze!

General Framework for
Asynchronous Lock-free Algorithms?

Analyzing Asynchronous Schemes

A Noisy Lens
for Asynchronous Algorithms

Noisy viewpoint:
Asynchronous(Algo.(INPUT)) = Serial(Algo.(INPUT + Noise)

Perturbed lterate Analysis for Asynchronous Stochastic Optimization
[Mania, Pan, P, Recht, Ramchandran, Jordan, 2015]

2 A

Joint work with \‘

HOGWILD! as noisy SGD

/. I Each processor in parallel
S1 7 L2 ;
sample function f;
f 2 :

* Defi Sk isthe k-th sampled data point

x = read shared memory

: g=—7-Vfi(z)
" for v in the support of f do , » yy
d g Ty < Ty 4 g e Fact: Cores don't read “actual” iterates

but “noisy iterates” ;.

* After I processed samples, the contents of RAM are:
(atomic writes + commutativity)

Ex.

HOGWILD! as noisy SGD
.
S1 /.5132

7 sample function f; * Defi Sk isthe k-th sampled data point
J2 x = read shared memory
: g=—Vfi(z)
" for v in the support of f do , .y .
! ., L e Fact: Cores don't read “actual” iterates

but “noisy iterates” ;.

* After I processed samples, the contents of RAM are:
(atomic writes + commutativity)

\ >
Ex C/O@ (/O@% C/O@ RAM
| 0 0
0 5 |
0 0 7

HOGWILD! as noisy SGD
.
S1 /.5132

7 sample function f; * Defi Sk isthe k-th sampled data point
J2 x = read shared memory
: g=—Vfi(z)
" for v in the support of f do , .y .
! ., L e Fact: Cores don't read “actual” iterates

but “noisy iterates” ;.

* After I processed samples, the contents of RAM are:
(atomic writes + commutativity)

\ ™
Ex C/O@ (/O@% C/O@ RAM
| 6 0
o 5N W
0 0~ 7

HOGWILD! as noisy SGD
.
S1 /.5132

7 sample function f; * Defi Sk isthe k-th sampled data point
J2 x = read shared memory
: g=—Vfi(z)
" for v in the support of f do , .y .
! ., L e Fact: Cores don't read “actual” iterates

but “noisy iterates” ;.

* After I processed samples, the contents of RAM are:
(atomic writes + commutativity)

\)
Ex C/O@ (/O@% C/O@ RAM
| = 0 0
o 5N W 5
0 0~ / 0

HOGWILD! as noisy SGD
o

h =82 | sample function f; e Def: Sf isthe k-th sampled data point
J2 : x = read shared memory
; g=—7-Vfi(z)
" for v in the support of f do , .y .
! L, L e Fact: Cores don't read “actual” iterates

but “noisy iterates” ;.

* After I processed samples, the contents of RAM are:
(atomic writes + commutativity)

Fx. o c,o@% RAM
A 4
0 0 0
0° 5 | 5

HOGWILD! as noisy SGD
o

h =82 | sample function f; e Def: Sf isthe k-th sampled data point
J2 : x = read shared memory
; g=—7-Vfi(z)
" for v in the support of f do , .y .
! L, L e Fact: Cores don't read “actual” iterates

but “noisy iterates” ;.

* After I processed samples, the contents of RAM are:
(atomic writes + commutativity)

Fx. o c,o@% RAM
-
1 HE 0 |
0° 5 | 5

HOGWILD! as noisy SGD
.
S1 /.5132

7 sample function f; * Defi Sk isthe k-th sampled data point
J2 x = read shared memory
: g=—Vfi(z)
" for v in the support of f do , .y .
! ., L e Fact: Cores don't read “actual” iterates

but “noisy iterates” ;.

* After I processed samples, the contents of RAM are:
(atomic writes + commutativity)

\ >
Ex C/O@ (/O@% C/O@ RAM
| 0 ~9.
0 5 -

HOGWILD! as noisy SGD
.
S1 /.5132

7 sample function f; * Defi Sk isthe k-th sampled data point
J2 x = read shared memory
: g=—Vfi(z)
" for v in the support of f do , .y .
! ., L e Fact: Cores don't read “actual” iterates

but “noisy iterates” ;.

* After I processed samples, the contents of RAM are:
(atomic writes + commutativity)

\ >
Ex C/O@ (/O@% C/O@ RAM
| 0 0 |
0 5 | 6
.

HOGWILD! as noisy SGD
_an

h =82 | sample function f; e Def: Sf isthe k-th sampled data point
f2 x = read shared memory
; g=—7-Vfi(z)
" for v in the support of f do , .y .
! L, L e Fact: Cores don't read “actual” iterates

but “noisy iterates” ;.

* After I processed samples, the contents of RAM are:
(atomic writes + commutativity)

Lo — 7 sto(i'()) BRI vaT—l(j\jT_l)

Main Questions:

|) Where does noise come from!?
2) How strong is it!

Convergence Rates for Noisy SGD

We want to analyze noisy SGD

Lk+1 = Lk — 7 vak (Z%k)|

Elementary analysis (using m-strong convexity assumption on f):
E{llzrrs — 2|7} < (1= -m) - E{lloe — 2" "} + 9 - E{IV fs,. (20)]I}

Simple Lemma:

fboth terms = O(y*M?)

Noisy SGD gets same rates as SGD (up to multiplicative constants)

50..is asynchrony noise small?

Understanding Asynchrony Noise

timeline
>
CPU | Sample |
CPU 2 Sample 2

CPU 3 Sample 3

Understanding Asynchrony Noise

/3

timeline fi /.
> 'j Z:

CPU | Sample | I
CPU 2 Sample 2 ?:

CPU 3 Sample 3

“Serialized” Processing Timeline

Understanding Asynchrony Noise

timeline
X fi
CPU | Sample | fs
CPU 2 Sample 2
CPU 3 Sample 3 I3

“Serialized” Processing Timeline

=
=

Understanding Asynchrony Noise

timeline f1 /.
> _; Z:

CPU | Sample | fo
CPU 2 Sample 2 w
CPU 3 Sample 3 Js \.

“Serialized” Processing Timeline

]
’ l l.;.'.—.‘_
Nz

A
A
/A0

f3 @

Understanding Asynchrony Noise

timeline f1 /.
> _5 Z:

CPU | Sample | fo
CPU 2 Sample 2 ?:
CPU 3 Sample 3 I3 \.

“Serialized” Processing Timeline

Asynchrony noise is combinatorial

coordinates in conflict can be as noisy as possible.
(no generative model assumptions)

Convergence Rates for Hogwild!

* Let's now analyze “noisy” SGD:

Lk+1 — Lk — 7 stzc (jjk)

* Assumption: no more than 7 samples processed, while a core Is processing one
Eg, T =3

Important Note:
If S; i1s done before §y. Is sampled:
its gradient contribution is recorded in shared RAM,
when a thread starts working on S

If 53 overlaps in time with S (i.e., the two samples are concurrently processed) :
its gradient contribution is only partially recorded in shared RAM,
when a thread starts working on 5.

Convergence Rates for Hogwild!

* Assumption: no more than T samples processed, while a core Is processing one

* For each sample Sj

Any difference between i‘k and L. caused only by samples that “overlap™ with Sk
Therefore

* If S; is sampled before Sk it might overlap withSg iff ¢ > k — 7

* If S; is sampled after Sk , it might overlap with Sk iff + < k + 7

Hence:

k+T1
T — Tk = Z Y- SiV fsi(23)

i=k—T1,1F#k

Sg = diagonal with entries in {—1,0,1}

Convergence Rates for Hogwild!

Let's now analyze “noisy” SGD:

Tr+1 = Tk — V- Vs, (Tk)

Assumption: no more than 7 samples processed, while a core is processing one

S — 5 k-1

timeline = N] .

| | B ap = Z Y- S)V fo, (25)
ot S | i=k—T,itk

Elementary analysis (using m-strong convexity assumption on f):

E{llzets — 2717} < (1= -m) - E{|lz, — 2"} +9% - E{|V fsr (@) I}

Lemma:

Bl = o)

Noisy SGD gets same rates as SGD (up to multiplicative constants)

Q: Is asynchrony noise that small?

Asynchrony Noise

The main thing we need to bound

VE{(zk — &k, V f5, (&)} = 7°E <

Asynchrony Noise

The main thing we need to bound

k+T
VE{(zk — Zk, V fo, (21))} = 7' < > SV (), stk(i’k)>
1=k—T1,1#£k

Reminder: we need it smaller than nyMQ

Note: Asynchrony causes error if sampled grads overlap.

Simple Idea:
Samples might be concurrently processed, but they only “interfere” if they are talking to

the same variables:
/I X1 f 1

p— T — § fl To
timeline S f2 .: f f27/<7z

Sample | ; |
Ld In

Sample 2 In

If the interference is “rare’”’ the noise term should be small

Asynchrony Noise

The main thing we need to bound

k+T
VE{(zk — Zk, V fo, (21))} = 7' < > SV (), stk(i’k)>
1=k—T1,1#£k

Reminder: we need it smaller than nyMQ

Note: Asynchrony causes error if sampled grads overlap.

Simple Idea:
Samples might be concurrently processed, but they only “interfere” if they are talking to

the same variables:
/I X1 f 1

p— T — § fl D
timeline S f2 .: f f27/<7z

Sample | ; |
Ld In

Sample 2 In

Asynchrony Noise

The main thing we need to bound

k+T
VE{(zk — Zk, V fo, (21))} = 7' < > SV (), stk(i’k)>
1=k—T1,1#£k

Reminder: we need it smaller than nyMQ

Note: Asynchrony causes error if sampled grads overlap.

Simple Idea:
Samples might be concurrently processed, but they only “interfere” if they are talking to

the same variables:
/I X1 f 1

p— T — § fl D
timeline S f2 .: f f27/<7z

Sample | ; |
Ld In

Sample 2 In

Asynchrony Noise

The main thing we need to bound

k+T
VE{(zk — Zk, V fo, (21))} = 7' < > SV (), stk(i’k)>
1=k—T1,1#£k

Reminder: we need it smaller than nyMQ

Note: Asynchrony causes error if sampled grads overlap.

Simple Idea:

Samples might be concurrently processed, but they only “interfere” if they are talking to
the same variables:

___ Bad Event
timeline o If the functions sampled share variables
Sample | <vf37, (x]-)7vf8j (92)> 7é 0
Sample 2

Good Event

If the functions sampled do not share variables

ﬁ é:ﬁé f/fl V v =0
D¢ P Y (o (21, V foy (1)

Asynchrony Noise

The main thing we need to bound

YE{{zr — &, Vo (E8))} = 7°E < > SV (@), stk(i’k)>

Reminder: we need it smaller than ~v?M?

Note: Asynchrony causes error if sampled grads overlap.

k+T1

1=k—T1,1#k i=k—T1,1#£k

k+T1 '

Cauchy-Schwarz

2 | 1.2
a-bga —2|—b

|V fs(@)|* < M

Asynchrony Noise

The main thing we need to bound

YE{{zr — &, Vo (E8))} = 7°E < > SV (@), stk(i’k)>

Reminder: we need it smaller than ~v?M?

Note: Asynchrony causes error if sampled grads overlap.

k+T1 | (k+1)
72E< Z ngfsz(iz)avfsk<£k)> S 72E < Z M2 ’ 1S@'ﬂ8k;:0
1=k—T1,1#£k \’I::k—T,i#k)

Whatis 15 .45, —0 !

Indicator: Does sample i overlap with sample k?

Asynchrony Noise

The main thing we need to bound

YE{{zr — &, Vo (E8))} = 7°E < > SV (@), stk(i’k)>

Reminder: we need it smaller than ~v?M?

Note: Asynchrony causes error if sampled grads overlap.

k+T1 | (k+1)
72E< Z ngfsz(iz)avfsk<£k)> S 72E < Z M2 ’ 1S@'ﬂ8k;:0
1=k—T1,1#£k \’I::k—T,i#k)

<~?27 - M? E{l, s —0}

What is E{1,,ns, -0}’

The probability that sample i overlaps with sample k

Asynchrony Noise

The main thing we need to bound

k+T
VE{(zk — Zk, V fo, (21))} = 7' < > SV (), stk(i’k)>
1=k—T1,1#£k

Reminder: we need it smaller than ~v?M?

Note: Asynchrony causes error if sampled grads overlap.

é | 5 h1 7- L2
timeline N 1, f27/<

Sample | |

5 Sample 2 fn

Asynchrony Noise

The main thing we need to bound

k+T
VE{(zk — Zk, V fo, (21))} = 7' < > SV (), stk(i’k)>
1=k—T1,1#£k

Reminder: we need it smaller than ~v?M?

Note: Asynchrony causes error if sampled grads overlap.

é | 5 h1 7- L2
timeline N 1, f27/<

Sample |) |
5 Sample 2 fn

Pr(two samples conflict) =

Asynchrony Noise

The main thing we need to bound

YE{{zr — &, Vo (E8))} = 7°E < > SV (@), stk(i’k)>

Reminder: we need it smaller than ~v?M?

Note: Asynchrony causes error if sampled grads overlap.

k+T
W2E< Z ngfsz(:%’t)?vfb’k(:%k>> < 72 . 27—'M2 'E{lsiﬂsk#()}
1=k—T1,1#£k

n

204y

The noise term is below 2 M? when 7 <

Convergence Rates for Hogwild!

L+1 — Lk — 7 vak (jk)
Reminder of Noisy SGD Rates:

B{llwrer =27} < (1 —v-m) - E{llzg —2|I°} +97 - B{|IVfo, ()}
+ 2ym - B{ ||z, — 2|} + 27 - B{{zx — &k, Vs, (E1))}

Lemma:

Bl = o)

Noisy SGD gets same rates as SGD (up to multiplicative constants)

Hogwild Rates: Proof Recap

Hogwild is equivalent to a noisy serial SGD

4

asynchrony noise affects rates, but if bounded, not by much

§

n

When core delay is less than 7 < , noise does not affect convergence

av

$

Hogwild! Achieves linear speedups
*=in terms of worst case convergence

Convergence of Hogwild

THEOREM 3.4. If the number of samples that overlap in time with a single sample
during the execution of HOGWILD! is bounded as

2
T:C’)<min{_n M }),
AC em2

HOGWILD!, with step size v = 55%, reaches an accuracy of E|x, — x*||* < € after
M?log (%
em

iterations.

Examples of Sparse Problems

Sparse Support Vector Machines

sparse vectors

minimize,, Z max(l — Yoz’ 24,0) + Al|z||3
o€l

Matrix Completion

R* ®
M =| L
|
dy xd> do xr rx dy
(di=dy)

Entries Specified on set E (with |E|=n)

(u,v)EE

Graph Cuts

/T— * Image Segmentation
* Entrity Resolution
* Topic Modeling

n=|E|

minimize; Y,)er Wuol|Zu — To 1
subject to 1%z, =1, , >0, forv=1,...,D

Sparsified BackProp

70N

.\

RS ”,IC\
‘s’dwﬂ.&\m wﬂo,o%&\r
‘ .1 A/ HNAAN

A SN SIS

‘s’ sp.‘o O‘ \Q b»"v “
XKD ‘\% 4%
EXTRO-EX RO

/)

2N

NN
A S A

(b) After applying dropout.

Standard Neural Net

@
S

—Hogwild

Kd
.
.
K3
K
K3
K3
K3
K3
.

\-
-
.
.
-
K
K
K
K
.
.
.

SVM
RCVI

Speedups

- —Hogwild

R
K
.

MC
Netflix

Experiments run on |2 core machine
| O cores for gradients, | core for data shuffling

- —Hogwild

2 4 6
Number of Splits

CUTS
Abdomen

Open Problems

Open Problems: Part |

Assumptions: Sparsity + convexity => linear speedups

OFR:
Hogwild! On Dense Problems

Maybe we should featurize dense ML Problems,
so that updates are sparse

O.P:
Fundamental Trade-off
Sparsity vs Learning Quality?

Open Problems: Part 2

- What we proved:
bound on #iter of SGD to €

bound on #iter of Parallel SGD to €

- What we really care about:

worst case speedup =

Time of serial A to accuraccy e

speedup =

Time of parallel A to accuraccy e

O.P:
True Speedup Proofs for Hogwild
O.P:
Guarantees for Nonconvex Problems?

Holy Grall

Open Problems: Part 3

Hogwild! Algorithms great for Shared Memory Systems

: IO
- Issues when scaling across nodes, due to comm

A

ﬂ

>

speedup

H#Hthreads

- Similar Issues for Distributed:

OFR:
How to provably scale on NUMA!

O.P:

&8
i~ g - i

I/0
Controller

Sync vs Async is still open

Reproducible Models

Reproducipility
HOGWILD! Models are not reproducible

Fach training session has inherent “system”
randomness

Does not allow to recreate models If needed
Barrier for accountability and reproducibility

How can we resolve it?

Reproducipility

Aserial(Sa 7T) — Aparallel(sa 7T)

For all Data sets S
For all data order W (data points can be arbitrarily repeated)

Main advantage:
- we only need to “prove” speedups

- Convergence proofs inherited directly from serial

Main Issue:
- Serial equivalence too strict
- Cannot guarantee any speedups In the general case

Serial Egquivalence

When Is serial equivalence feasible!

What algorithmic patterns allow for efficient
serial equivalent?

Can a serial equivalent parallel algorithm ever
be competitive with Hogwild?

Reading List

Bertsekas, D.P, 1983. Distributed asynchronous computation of fixed points. Mathematical Programming,
27(1), pp.107-120.Vancouver

Tsitsiklis, |, Bertsekas, D. and Athans, M., 1986. Distributed asynchronous deterministic and stochastic
gradient optimization algorithms. |[EEE transactions on automatic control, 31(9), pp.803-812.

Recht, B, Re, C,,Wright, S.and Niu, F, 201 |. Hogwild!: A lock-free approach to parallelizing stochastic
gradient descent. Advances in neural information processing systems, 24.

Liu, J, Wright, S, Ré, C., Bittorf,V. and Sridhar, S., 2014, June. An asynchronous parallel stochastic
coordinate descent algorithm. In International Conference on Machine Learning (pp. 469-4/7). PMLR

Mania, Horla, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran, and Michael
Jordan. "Perturbed Iterate Analysis for Asynchronous Stochastic Optimization." (2019).

J Reddi, S., Hefny, A, Sra, S., Poczos, B. and Smola, A, 2015. On variance reduction in stochastic gradient
descent and its asynchronous variants. Advances in neural information processing systems, 28.

