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- HogWild!



Stochastic Gradient Descent

- Idea (‘50s, ‘60s [Robbins, Monro], [Widrow, Hoff]): 
Sample a data point + locally optimize.

loss for data point i

SGD:  An Über-algorithm
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wk+1 = wk � � ·r`(wk; zik)



Stochastic Gradient Descent

SGD can take years on large nlp models even on a 
single high end GPU

Goal:
Speed up Machine Learning



Scaling Up SGD



Synchronous computation



Algorithm of choice: minibatch SGD



Stores the model

Gradient Computations

Algorithm of choice: minibatch SGD



Algorithm of choice: minibatch SGD
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Algorithm of choice: minibatch SGD

B = batch size, 
gradients / iteration
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Algorithm of choice: minibatch SGD
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Algorithm of choice: minibatch SGD



Algorithm of choice: minibatch SGD

Repeat distributed iterations until 
we are happy with the model



ComputationStorage

Data Distributed 
Data Storage Aggregator
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“The scale and complexity of modern Web services 
make it infeasible to eliminate all latency variability.”

Jeff Dean, Google.



Stragglers
• Ideal compute time per node ~ O(total_time/P)
• But there is a lot of randomness:

- Network/Comm Delays
- Node/HW Failures
- Resource Sharing

• What if time per node is a random variable:
X = constant + Exp(λ)

Lemma:
E{X(i)} = 1 +

1

�

nX

n�i+1

1

i

Remark:
Slowest node is 

log(n) times slower 
than fastest
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Simulation
• X(t) = 1+ Exp(0.5), n = 10, 100, 1000, 1000

Straggler issue: 
leads to slower mini-batch SGD 

implementations



Bottleneck: Straggling Learners
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Iteration Completion Time per worker
Data set = CIFAR-10
t2.small EC2 instances
148 worker nodes, 1 parameter server

> 2x

> 6x
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99.5%
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Measured on Amazon AWS

Can we “robustify” distributed ML
against stragglers?



A case against Synchronization
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Asynchronous SGD on Sparse 
Functions



SGD on sparse functions

• Def: 
Hyperedge = the subset of variables that depends on

• The function-variable graph
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Figure 1: The left bipartite graph has as left vertices the n function terms, and as right vertices the coordinates of
x. A term fei is connected to a coordinate xj , if hyperedge ei contains j (i.e., if the i-th term is a function of that
coordinate). The left graph denotes a conflict graph between the function terms. The vertices denote the function
terms, and two terms are joined by an edge if they conflict on at least one coordinate in the bipartite graph.

As we will see, under our perturbed iterate analysis framework the convergence rate of asynchronous
algorithms depends on the sparsity of the problem. Let us define by ∆C, the average degree in the conflict
graph, which denotes the average number of terms that are in conflict with a single term. We assume that
∆C ≥ 1, otherwise we could decompose the problem into smaller independent sub-problems.

Hogwild! (Alg. 1) is a method to parallelize SGM [1]. It is deployed on multiple cores that have access
to shared memory, where the optimization variable x and the data points that define the f terms are stored.
During its execution each core samples uniformly at random a hyperedge s from E . It reads the coordinates
v ∈ s of the shared vector x, evaluates ∇fs at the point read, and finally adds −γ∇fs to the shared variable.

Algorithm 1 Hogwild!

1: while number of sampled edges ≤ T do in parallel
2: sample a random hyperedge s
3: [x̂]s = an inconsistent read of the shared variable [x]s
4: [u]s = −γ · g([x̂]s, s)
5: for v ∈ s do
6: [x]v = [x]v + [u]v // atomic write
7: end for
8: end while

In Hogwild! cores do not synchronize or follow an order between reads or writes. Moreover, they
access/update a set of coordinates in x without the use of any locking mechanisms that would ensure a
conflict-free execution. The reads/writes of distinct cores can intertwine in arbitrary ways, e.g., while a core
updates a subset of variables, before completing its task, other cores can access/update the same variables.

In [1], the authors analyzed a simplified variant of Hogwild! where only a single coordinate per sampled
hyperedge is updated (i.e., the for loop in Hogwild! is replaced with a single coordinate update). This
simplification along with others, such as the assumption of consistent reads, alleviate some of the challenges
in analyzing the algorithm and allowed the authors to provide a convergence analysis. We show how our
perturbed gradient framework can be used in an elementary way to analyze the “full updates” version of
Hogwild!, while obtaining an improved bound compared to [1].

In the following, we denote by si the i-th sampled hyperedge by Alg. 1 that is assigned to some core, and
by x̂i ∈ Rd the contents of the shared memory read by this core; hence, the read variable vector “inherits”
the same iteration index as the sampled hyperedge si. Since the core reads only the coordinates indexed by
si, we need to clarify what is [x̂i]v for coordinates that are not in the hyperedge si, i.e. for v &∈ si. All the
bounds presented in this work hold even if [x̂i]v for every v &∈ si, is equal to any possible values stored in the
shared memory at position v during the processing of si. For the purpose of analysis, the reader can think
of a processor reading all coordinates v &∈ si, after sampling si. We note that we do not assume consistent
reads, i.e., the shared variables in memory can potentially change while a core is reading them.

Assumption 1. The iterate x̂i is independent of the sampled hyperedge si.

4

f(x) =
X

e2E
fe(xe)

e fe

Matrix Fact./Comp.
Graph cuts

Graph/text Classification
Topic Modeling

Dropout
…



SGD on sparse functions

Data points Model
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Step1:
Pick random data point

2Sample sk



SGD on sparse functions

1

2

Data points Model

3

4

Step 2:
Read Variables

x0

x4

x6

Read x



SGD on sparse functions
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Step3:
Compute local function

rfsk(x)

Compute grad. 
of local loss
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SGD on sparse functions
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Step4:
Update Model

Update Model



Parallelizing Sparse SGD on shared 
memory architectures



Single Machine, Multi-core



Challenges in Parallel SGD

x x� � ·rf1(x)

x x� � ·rfn(x)

...
...

shared variablesdata points

No conflict => 
2 parallel iterations = 2 serial iterations



Challenges in Parallel SGD

x x� � ·rf1(x)

x x� � ·rfn(x)

...
...

shared variablesdata points

No conflict => Speedup



shared variablesdata points

Challenges in Parallel SGD

...
...

x x� � ·rf1(x)

x x� � ·rf2(x)

oops, conflicts

What should we do for conflicts?
Approach 1: Coordinate or Lock 
Approach 2: Don’t Care (Lock-free Async.)



Prior to 2011 Work
Long line of theoretical work since the 60s 

[Chazan, Miranker, 1969]

Foundational work on Asynchronous Optimization
Master/Worker model [Tsitsiklis, Bertsekas, 1986, 1989]

Recent hardware/software advances renewed the interest
Round-robin approach [Zinkevich, Langford, Smola, 2009]

Average Runs [Zinkevich et al., 2009], 
Average Gradients [Duchi et al, Dekel et al. 2010] 

Issue: Synchronization and comm. overheads

Many based on “Coordinate” or “Lock” approach
Why Coordinate or Lock?



Impact

Downpour SGD,                      Project Adam use HOGWILD!
Renewed interest on async. optimization

HOGWILD! 2011
“Run parallel lock-free SGD without synchronization”
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sample function fi

x = read shared memory

g = �� ·rfi(x)
for v in the support of f do

xv  xv + gv

Each processor in parallel



Challenges in Analysis



Challenges in Hogwild!

Processor 1

Processor 2

Processor P

...
...

Shared Memory

Issues:
1. updates can be old 

2. results can overwritten

Incompatible with classic SGD analysis



How to Analyze Hogwild?
• Measure of performance

Goal of a Hogwild Analysis

Assumption:
random sampling of gradients yields a nearly optimal load balance 

(if number of cores not too many)

Prove that Parallel SGD and Serial SGD have similar 
convergence rates for given number of samples 

worst case speedup =
bound on #iter of SGD to ✏

bound on #iter of Parallel SGD to ✏



- [Niu, Recht, Re, and Wright, 2011] the first analysis of Hogwild! Issues:

- many impractical assumptions
- simplified read/write model

[consistent reads, single coordinate updates, …]
- lengthy derivations

- Many Async. algorithms follow using similar assumptions, and/or analysis:
[Duchi et al, 2011], [Liu et al, 2014, 2015], [Avron et al. 2014], 

[De Sa et al, 2015], [Lian et al., 2015], [Peng et al., 2015]

How to Analyze Hogwild?



How to Analyze?

- [Niu, Recht, Re, and Wright, 2011] give the first
convergence analysis of Hogwild! Issues:

- (over) simplified read/write model. [consistent reads, 
single coordinate updates, etc]

- lengthy derivations

- Several Async+lock-free algorithms follow 
using similar assumptions, and/or analysis:
- [Duchi et al, 2011], [Liu et al, 2014, 2015], [Avron et al. 2014], [De Sa et al, 2015], 
[Lian et al., 2015], [Peng et al., 2015]

General Framework for 
Asynchronous Lock-free Algorithms?



Analyzing Asynchronous Schemes



A Noisy Lens 
for Asynchronous Algorithms

Main Idea

Perturbed Iterate Analysis for Asynchronous Stochastic Optimization 
[Mania, Pan, P, Recht, Ramchandran, Jordan, 2015]

Joint work with

Noisy viewpoint:
Asynchronous(Algo.( INPUT ))     Serial(Algo.(INPUT + Noise)⌘



HOGWILD! as noisy SGD

• Def: is the k-th sampled data point

• Fact: Cores don’t read “actual” iterates   
but “noisy iterates” 

• After T processed samples, the contents of RAM are:
(atomic writes + commutativity)

Ex. 

sk

xk
x̂k

......

x1
x2

xd

f1
f2

fn

sample function fi

x = read shared memory

g = �� ·rfi(x)
for v in the support of f do

xv  xv + gv

Each processor in parallel
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x1z }| {
x0 � � ·rfs0(x̂0)� . . .� � ·rfsT�1(x̂T�1)| {z }

xT

HOGWILD! as noisy SGD

• Def: is the k-th sampled data point

• Fact: Cores don’t read “actual” iterates   
but “noisy iterates” 

• After T processed samples, the contents of RAM are:
(atomic writes + commutativity)

• The algorithmic progress is captured by ``phantom” iterates

xk+1 = xk � � ·rfsk(x̂k)

Main Questions:
1) Where does noise come from?

2) How strong is it?
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x = read shared memory

g = �� ·rfi(x)
for v in the support of f do

xv  xv + gv

Each processor in parallel



R1 R2

E{kxk+1 � x⇤k2}  (1� � ·m) · E{kxk � x⇤k2}+ �2 · E{krfsk(x̂k)k2}
+ 2�m · E{kxk � x̂kk2}+ 2� · E{hxk � x̂k,rfsk(x̂k)i}

Convergence Rates for Noisy SGD

We want to analyze noisy SGD

Elementary analysis (using m-strong convexity assumption on f):

Simple Lemma:
if both terms  =                         ,           

Noisy SGD gets same rates as SGD (up to multiplicative constants)

xk+1 = xk � � ·rfsk(x̂k)

aka SGD robust to small perturbationsSo.. is asynchrony noise small?

O(�2
M

2)



Understanding Asynchrony Noise
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Q: What causes asynchrony “noise”? A: “noisy 
reads” of the coordinates in the overlap x x� � ·rfek(x+ n)

Understanding Asynchrony Noise

Asynchrony noise is combinatorial 
coordinates in conflict can be as noisy as possible.

(no generative model assumptions)

CPU 1

CPU 2

CPU 3



Convergence Rates for Hogwild!
• Let’s now analyze “noisy” SGD:

• Assumption: no more than     samples processed, while a core is processing one
Eg, = 3
while 1 is being processed no more than 3 updates occur

Important Note: 
If     is done before       is sampled:

its gradient contribution is recorded in shared RAM, 
when a thread starts working on 

If     overlaps in time with      (i.e., the two samples are concurrently processed) :
its gradient contribution is only partially recorded in shared RAM, 

when a thread starts working on 

xk+1 = xk � � ·rfsk(x̂k)

⌧
⌧

si sk

si sk

sk

sk

3
1

timeline

42 5



Convergence Rates for Hogwild!
• Assumption: no more than     samples processed, while a core is processing one

• For each sample
Any difference between         and         caused only by samples that “overlap” with 
Therefore
• If      is sampled before      it might overlap with      iff
• If      is sampled after      , it might overlap with      iff

Hence:

⌧

sk
x̂k xk sk

si sk sk i � k � ⌧
sk sk i  k + ⌧si

Sj
i = diagonal with entries in {�1, 0, 1}

x̂k � xk =
k+⌧X

i=k�⌧,i 6=k

� · Sj
irfsi(x̂i)

3
1

timeline

42 5



Convergence Rates for Hogwild!
Let’s now analyze “noisy” SGD:

Assumption: no more than     samples processed, while a core is processing one

Elementary analysis (using m-strong convexity assumption on f):

xk+1 = xk � � ·rfsk(x̂k)

⌧

x̂k � xk =
k+⌧X

i=k�⌧,i 6=k

� · Sj
irfsi(x̂i)
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E{kxk+1 � x⇤k2}  (1� � ·m) · E{kxk � x⇤k2}+ �2 · E{krfsk(x̂k)k2}
+ 2�m · E{kxk � x̂kk2}+ 2� · E{hxk � x̂k,rfsk(x̂k)i}

Lemma: 
if            =  O(          )           

Noisy SGD gets same rates as SGD (up to multiplicative constants)

Q: Is asynchrony noise that small?



The main thing we need to bound

We just used 

Asynchrony Noise

Reminder: we need it smaller than �2M2

�E{hxk � x̂k,rfsk(x̂k)i} = �2E
*

k+⌧X

i=k�⌧,i 6=k

Sj
irfsi(x̂i),rfsk(x̂k)

+

x̂k � xk =
k+⌧X

i=k�⌧,i 6=k

� · Sj
irfsi(x̂i)

�2E{kxk � x̂kk2} = �3E
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Reminder: we need it smaller than �2M2



The main thing we need to bound

Note: Asynchrony causes error if sampled grads overlap. 

Simple Idea:
Samples might be concurrently processed, but they only “interfere” if they are talking to 
the same variables:
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f1
f2

fn
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fn

Asynchrony Noise

Sample 2

Sample 1

timeline

If the interference is “rare” the noise term should be small

Reminder: we need it smaller than �2M2

�E{hxk � x̂k,rfsk(x̂k)i} = �2E
*

k+⌧X

i=k�⌧,i 6=k

Sj
irfsi(x̂i),rfsk(x̂k)

+
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The main thing we need to bound

Note: Asynchrony causes error if sampled grads overlap. 

Simple Idea:
Samples might be concurrently processed, but they only “interfere” if they are talking to 
the same variables:
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*
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Sj
irfsi(x̂i),rfsk(x̂k)
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If the functions sampled do not share variables
hrfsi(x1),rfsj (y2)i = 0

Bad Event

Good Event

If the functions sampled share variables
hrfsi(x1),rfsj (y2)i 6= 0



Asynchrony Noise
The main thing we need to bound

Note: Asynchrony causes error if sampled grads overlap. 
Reminder: we need it smaller than �2M2
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krfsi(x̂i)k · krfsk(x̂k)k · 1si\sk=0

 �2
k+⌧X

i=k�⌧,i 6=k

1

2
·
�
krfsi(x̂i)k2 + krfsk(x̂k)k2

�
· 1si\sk=0

 �2
k+⌧X

i=k�⌧,i 6=k

M2 · 1si\sk=0

Cauchy-Schwarz

a · b  a2 + b2

2

krfs(x)k2  M2



Asynchrony Noise
The main thing we need to bound

Note: Asynchrony causes error if sampled grads overlap. 
Reminder: we need it smaller than �2M2

�E{hxk � x̂k,rfsk(x̂k)i} = �2E
*

k+⌧X

i=k�⌧,i 6=k

Sj
irfsi(x̂i),rfsk(x̂k)

+

�2E
*

k+⌧X

i=k�⌧,i 6=k

Sj
irfsi(x̂i),rfsk(x̂k)

+
 �2E

8
<

:

k+⌧X

i=k�⌧,i 6=k

M2 · 1si\sk=0

9
=

;

 �2 · 2⌧ ·M2 · E{1si\sk=0}

1si\sk=0What is                ?

Indicator : Does sample i overlap with sample k?



Asynchrony Noise
The main thing we need to bound

Note: Asynchrony causes error if sampled grads overlap. 
Reminder: we need it smaller than �2M2

�E{hxk � x̂k,rfsk(x̂k)i} = �2E
*

k+⌧X

i=k�⌧,i 6=k

Sj
irfsi(x̂i),rfsk(x̂k)

+

�2E
*

k+⌧X

i=k�⌧,i 6=k

Sj
irfsi(x̂i),rfsk(x̂k)

+
 �2E

8
<

:

k+⌧X

i=k�⌧,i 6=k

M2 · 1si\sk=0

9
=

;

 �2 · 2⌧ ·M2 · E{1si\sk=0}

What is                      ?

The probability that sample i overlaps with sample k

E{1si\sk=0}
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Asynchrony Noise
The main thing we need to bound

Note: Asynchrony causes error if sampled grads overlap. 

Sample 2

Sample 1

timeline

Reminder: we need it smaller than �2M2

�E{hxk � x̂k,rfsk(x̂k)i} = �2E
*

k+⌧X

i=k�⌧,i 6=k

Sj
irfsi(x̂i),rfsk(x̂k)

+



......

x1
x2

xd

f1
f2

fn

f1

f2

fn

Asynchrony Noise
The main thing we need to bound

Note: Asynchrony causes error if sampled grads overlap. 

Sample 2

Sample 1

timeline

Pr( two samples conflict ) =                          

Reminder: we need it smaller than �2M2

�E{hxk � x̂k,rfsk(x̂k)i} = �2E
*

k+⌧X

i=k�⌧,i 6=k

Sj
irfsi(x̂i),rfsk(x̂k)

+

�av

n



�2E
*

k+⌧X

i=k�⌧,i 6=k

Sj
irfsi(x̂i),rfsk(x̂k)

+
 �2 · 2⌧ ·M2 · E{1si\sk 6=0}

= �2 · 2⌧ ·M2 · Pr{si \ sk 6= 0}}

= �2 · 2⌧ ·M2 · �av

n

The main thing we need to bound

Note: Asynchrony causes error if sampled grads overlap. 

Asynchrony Noise

Reminder: we need it smaller than �2M2

�E{hxk � x̂k,rfsk(x̂k)i} = �2E
*

k+⌧X

i=k�⌧,i 6=k

Sj
irfsi(x̂i),rfsk(x̂k)

+

The noise term is below               when ⌧  n

2�av
�2M2



Convergence Rates for Hogwild!

Reminder of Noisy SGD Rates:

xk+1 = xk � � ·rfsk(x̂k)

E{kxk+1 � x⇤k2}  (1� � ·m) · E{kxk � x⇤k2}+ �2 · E{krfsk(x̂k)k2}
+ 2�m · E{kxk � x̂kk2}+ 2� · E{hxk � x̂k,rfsk(x̂k)i}

Lemma: 
if            =  O(          )           

Noisy SGD gets same rates as SGD (up to multiplicative constants)



Hogwild Rates: Proof Recap
Hogwild is equivalent to a noisy serial SGD

asynchrony noise affects rates, but if bounded, not by much

When core delay is less than                   , noise does not affect convergence     ⌧  n

2�av

Hogwild! Achieves linear speedups
*=in terms of worst case convergence
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the same recursion (up to constants) as serial SGM. This directly implies the main
result of this section.

Theorem 3.4. If the number of samples that overlap in time with a single sample
during the execution of Hogwild! is bounded as

τ = O
(

min

{
n

∆C

,
M2

εm2

})

,

Hogwild!, with step size γ = εm
2M2 , reaches an accuracy of E‖xk − x∗‖2 ≤ ε after

T ≥ O(1)
M2 log

(
a0

ε

)

εm2

iterations.
Since the iteration bound in the theorem is (up to a constant) the same as that

of serial SGM, our result implies a linear speedup. We would like to note that an
improved rate of O(1/ε) can be obtained by appropriately diminishing stepsizes per

epoch (see, e.g., [15, 27]). Furthermore, observe that although the M2

εm2 bound on
τ might seem restrictive, it is—up to a logarithmic factor—proportional to the total
number of iterations required by Hogwild! (or even serial SGM) to reach ε accuracy.
Assuming that the average degree of the conflict graph is constant, and that we
perform a constant number of passes over the data, i.e., T = c · n, then τ can be as
large as Õ(n), i.e., nearly linear in the number of function terms.1

3.4. Comparison with the original Hogwild! analysis of [27]. Let us sum-
marize the key points of improvement compared to the original Hogwild! analysis:

1. Our analysis is elementary and compact, and follows simply by bounding the
Rj

0, R
j
1, and Rj

2 terms, after introducing the perturbed gradient framework of § 2.
2. We do not assume consistent reads: while a core is reading from the shared

memory other cores are allowed to read, or write.
3. In [27] the authors analyze a simplified version of Hogwild! where for each

sampled hyperedge only a randomly selected coordinate is updated. Here we analyze
the “full-update” version of Hogwild!.

4. We order the samples by the order in which they were sampled, not by
completion time. This allows to rigorously prove our convergence bounds, without
assuming anything on the distribution of the processing time of each hyperedge. This
is unlike [27], where there is an implicit assumption of uniformity with respect to
processing times.

5. The previous work of [27] establishes a nearly-linear speedup for Hogwild!

if τ is bounded as τ = O
(

4
√

n/∆R∆2
L

)

, where ∆R is the maximum right degree of

the term-variables bipartite graph, shown in Fig 3.1, and ∆L is the maximum left
degree of the same graph. Observe that ∆R · ∆2

L ≥ ∆L · ∆C, where ∆C is the
maximum degree of the conflict graph. Here, we obtain a linear speedup for up to
τ = O (min {n/∆C,M2/εm2}), where ∆C is only the average degree of the conflict graph
in Fig 3.1. Our bound on the delays can be orders of magnitude better than that
of [27].

4. Asynchronous Stochastic Coordinate Descent. In this section, we use
the perturbed gradient framework to analyze the convergence of asynchronous parallel

1Õ hides logarithmic terms.



Examples of Sparse Problems



Sparse Support Vector Machines

minimizex

X

�2E

max(1� y�xT z�, 0) + �kxk2
2

minimizex

X

�2E

 
max(1� y�xT z�, 0) + �

X

u2e↵

x2
u

du

!

+

+

+
+

+

+

+

+

+

-
-

-

- -

-

-

--

-

-

-
sparse vectors

edge 
degrees

�C

n
= O

�
avg conflicts

n

�



Matrix Completion

M L
R*

d2 x r r x d2d1 x d2

=

Entries Specified on set E (with |E|=n) 

minimize(L,R)

X

(u,v)2E

�
(LuRT

v �Muv)2 + µukLuk2
F + µvkRvk2

F

 

when entries selected 
uniformly at random

�C

n
= O

�
d2

d2
1

�

(d1≤d2)



Graph Cuts

• Image Segmentation
• Entity Resolution
• Topic Modeling

minimizex
P

(u,v)2E wuvkxu � xvk1
subject to 1T

Kxv = 1 , xv � 0 , for v = 1, . . . ,D

�C

n
= O

�
avg deg

n

�

n=|E|



Sparsified BackProp



Speedups

Experiments run on 12 core machine  
10 cores for gradients, 1 core for data shuffling

SVM
RCV1
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Netflix
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Open Problems



Open Problems: Part 1
Assumptions: Sparsity + convexity => linear speedups

Only soft sparsity needed =  uncorrelated sampled gradientsMaybe we should featurize dense ML  Problems,  
so that updates are sparse

O.P. : 
Fundamental Trade-off

Sparsity vs Learning Quality?

O.P. : 
Hogwild! On Dense Problems



Open Problems: Part 2
=

- What we proved:

- What we really care about:

speedup =
Time of serial A to accuraccy ✏

Time of parallel A to accuraccy ✏

worst case speedup =
bound on #iter of SGD to ✏

bound on #iter of Parallel SGD to ✏

O.P. : 
True Speedup Proofs for Hogwild

O.P. : 
Guarantees for Nonconvex Problems?

Holy Grail



Open Problems: Part 3
Hogwild! Algorithms great for Shared Memory Systems

- Issues when scaling across nodes, due to comm

- Similar Issues for Distributed:

O.P. : 
How to provably scale on NUMA?

O.P. : 
Sync vs Async is still open

sp
ee

du
p

#threads



Reproducible Models



Reproducibility
- HOGWILD! Models are not reproducible

- Each training session has inherent “system” 
randomness

- Does not allow to recreate models if needed

- Barrier for accountability and reproducibility

- How can we resolve it?



Reproducibility
Serial Equialence

Aserial(S,⇡) = Aparallel(S,⇡)

For all Data sets S
For all data order π (data points can be arbitrarily repeated)

Main Issue:
- Serial equivalence too strict

- Cannot guarantee any speedups in the general case

Main advantage:
- we only need to “prove” speedups

- Convergence proofs inherited directly from serial



Serial Equivalence
- When is serial equivalence feasible?

- What algorithmic patterns allow for efficient 
serial equivalent?

- Can a serial equivalent parallel algorithm ever 
be competitive with Hogwild?
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