ECES26: Part /

So far we talked about

- Generalization: why would expect our models to work
- SGD/GD: under what condritions do they work

- Why can we optimize neural networks?

Not a lot of algorithmic design principles for

large-scale learning

Advances and Challenges in
Distributed Machine Learning

We'll see a lot of principles for scaling up, and designing

the “plumbing’” of deep learning systems

Overview

Multicore vs. Distributed

Algorithms of choice

Open challenges with Performance Gains/Analysis
Communication bottlenecks

Straggler Nodes

Robustness

Stochastic Gradien': Descent

mm — g l(w;z;)
loss for data point |

- ldea (‘505,‘605 [Robbins, Monro], [Widrow, Hoﬁ]):
Sample a data point + locally optimize.

SGD: An Uber-algorithm

Wi4+1 = W — 7 Vf(Wk; Zik)

Stochastic Gradient Descent

Different names and flavors

ML / Optimization / Statistics / EE

Perceptron
Incremental Gradient
Back Propagation (NNs)
Oja’s iteration (PCA)
LMS Filter

Has been around for a while, for good reasons:
- Robust to noise
- Simple to implement
- Near-optimal learning performance *
- Small computational foot-print

Stochastic Gradient Descent

GP1-3 would take 288 years to train on a single Tesla
V100 GPU

[source:]

Goal:
Speed up Machine Learning

|dea

Train at

scale

System Setup

Parallel vs. Distributea

- Parallel (CPU/multicore GPU)
* Single machine, many cores (usually up to 10-100s)
e Shared memory (all cores have access to RAM)
« Comm.to RAM Is cheap

- Distributed
* Many machines (usually up to100-1000s) connected via network
* Shared-nothing architecture (each node has its own resources)
e Communication costs non-negligible

Scaling up vs. Scaling out

Scaling up vs. out

VWhat we'd ideally like
e (Cores 0O
« RAM OO
e Comm. Cost
e (Cost to build O

Feasible solutions:

Scaling up:
» Getting the largest machine possible, with maxed out RAM

Scaling out:
« (Getting a bunch of machines, and linking them together

-
Scaling up vs. out

Scaling up Scaling out
MAOLY Pros:
RAM comm. cheap (no network) | Much cheaper (especially on Ec2)
Less Impl. overheads Can replace faulty parts
Less power/smaller footprint Better fault tolerance (if it matters)
Cons: Cons:
|00s cores/machine = expensive Network bound
Smaller fault tolerance Major implementation overheads

Limited upgradability Large power footprint

Should | buy or rent!

Price Comparisons for 4 GPUs racks

] [] s A~ [N

e § L
|n‘FIopsI$ (1-yr analysis with 50% occupancy)
Hyperplane- Hyperplane- Scalar-A100
Scalar-A100 p4d
A100 (25% A100 (100% (100% p4d (qll p4d (no p4d (on
(25% annual (partial
annual annual annual upfront) upfront) demand)
depreciation) upfront)
depreciation) depreciation) depreciation)
Total Cost
$55,534 $160,534 547,279 $138,779 $164,955 $168,321 $176,737 $143,544
1-yr
o Alt
Total
Petaflops 2,459 808 2,459,808 2,459,808 2,459 808 2,459,808 2,459808 2459808 2459808
1-yr
Petaflops/$ 443 153 52.0 17.7 14.9 14.6 13.9 171

web Services™| M

Google Cloud Platform

gl \icrosoft
Wl Azure

source https://lambdalabs.com/blog/tesla-a100-server-total-cost-of-ownership/

Price Comparisons for 4 GPUs racks

] [l [] [l /7 A~ Tr—1 [N

° S L
|n‘FIopsI$ (1-yr analysis with 50% occupancy)
Hyperplane- Hyperplane- Scalar-A100
Scalar-A100 p4d
A100 (25% A100 (100% (100% p4d (qll p4d (no p4d (on
(25% annual (partial
annual annual annual upfront) upfront) demand)
depreciation) upfront)
depreciation) depreciation) depreciation)
Total Cost
$55,534 $160,534 $47,279 $138,779 $164,955 $168,321 $176,737 $143,544
1-yr
o Alt
Total
Petaflops 2,459 808 2,459,808 2,459,808 2,459 808 2,459,808 2,459808 2459808 2459808
1-yr
Petaflops/$ 443 153 52.0 17.7 14.9 14.6 13.9 17.1

Doesn't sound fun

A\Zure

source https://lambdalabs.com/blog/tesla-a100-server-total-cost-of-ownership/

How to distributed the
compute effort!

Distribute the effort!

Many models weaker than one
Delays and Slow Nodes Theory
Communication Costs

Several 1ssues

Practice

How to Parallelize
Wit1 = Wg — YVs, (Wk; x;)

- Parallelize computation of one update!?

ssue:
computing VU, (w; ;) cheap (even for deep nets) [O(d) |

- Parallel Updates?

[ssue: SGD is inherently serial. ...

Q: Can we parallelize inherently serial algorithms?

Simple idea: mini-batch SGD

- Compute multiple gradients in parallel

W1 = Wi — YV (wg; x;)
Wht1 = Wi — YV (wp; x;)
W1 = Wi — YV (wp; x;)
Wr+1 = Wi — ”Ysti (wr; ;)

Q: Does 1t perform the same as SGD?

[he Master-worker Setting

master node
(parameter server)

worker P

Algorithm of choice: minibatch SGD

master node
(parameter server)

=

worker 1 worker 2 worker P

Algorithm of choice: minibatch SGD

master node

(parameter server)
{I < Stores the model

worker 1 worker 2 worker P

Gradient Computations

Algorithm of choice: minibatch SGD

master node
(parameter server)

ﬁ?W
- - -

worker 1 worker 2 worker P

Algorithm of choice: minibatch SGD

master node
(parameter server)

g~
@x
ad -0

worker 1 worker 2 worker P

g1 = Z VE((xi,yi); W) g&p = Z VE((xi,9i); W)

1€S51 1€Sp

Algorithm of choice: minibatch SGD

Algorithm of choice: minibatch SGD

master node
(parameter server)

g
@xt
=

worker 1 worker 2 worker P

All-reduce

i — i

vma@ov,ﬁ@%) e NIL
Vioss(Ser. A) Vloss : Vloss(@»,)
@) Vloss(@a, ®) (@D ‘)+ @3

Sergeev, et al. Horovod: fast and easy distributed deep learning in Tensorflow

All-reduce

€

Sergeev, et al. Horovod: fast and easy distributed deep learning in Tensorflow

All-reduce

i

i e
Vloss @ Vloss(@ A)

Sergeev, et al. Horovod: fast and easy distributed deep learning in Tensorflow

All-reduce

after K-1 push rounds

Vloss(@), .) +
Vloss(@), -)+ VIOSS($7 A)

i — i

Vloss(@;, ') + Vloss(@;, ') +
Vloss(@), -)+ Vloss(@), A) Vloss(@), -)+ Vloss(@), A

Sergeev, et al. Horovod: fast and easy distributed deep learning in Tensorflow

All-reduce, the server-free case

All-reduce SGD ,
Repeat until convergence

[Cotter, Shamir, Srebro, Sridharan, NIPS |]
[Dekel, Gilad-Bachrach, Shamir, Xiao, JMLR 2012]
[Friedlander and Schmidt, SIAM |SC 201 2]

 Takac, Bijral, Richtarik, Srebro, ICML 201 3]
LI, Zhang, Chen, Smola, KDD 2014]

he: e
v ™ Jain, Kakade, Kidambi, Netrapalli, Sidford, arxiv' | 6]

@) A @ [De, Yadav, Jacobs, Goldstein, arxiv' | 6]

The ldeal Speedup Should be Proportional to
#Compute Nodes

Many Questions.. ..

* How fast does distributed-SGD converge!
e How can we measure speed!

* How can we update the model faster?

e How can we reduce communication?

* What happens with delayed nodes!

* Does fault tolerance matter?

Compute and Communication
Bottlenecks

o, |Reality ~100x worse than optimal

“Large Scale Distributed Deep Networks” [Dean et al., NIPS 2012]

How to analyze parallel algorithms!?

* Main measure of performance

Time of serial A to accuraccy ¢

speedup =
P P~ Time of parallel A to accuraccy e

Example: Gradient Descent
1 n
R == D VA
i=1

P n
Parallel X+l = X — 7 % (Z Vi (xk) + ..+ Z sz'p(Xk)>

11=1 ip=n—P+1

- Convergence Is invariant of allocation
- Both algorithms reach to same accuracy after I iterations
- Speedup is iIndependent of covergence rate

How to analyze parallel algorithms!?

* Main measure of performance

Time of serial A to accuraccy ¢
speedup =

Time of parallel A to accuraccy ¢

Example: Gradient Descent

Embarrassingly Parallel O(#cores) speedup

Not true for mini-batch SGD

speedups for minibatch SGD

Two factors control run-time

Time to accuracy € =

[time per data pass] X [#passes to accuracy €]

35

w
o
T

Speedup over one worker per epoch

specc

ch SGD

ups for miniba:

“[...] on more than 8 machines [...]
network overhead starts to dominate [...]"

TL:DR: Communication is the Bottleneck

Why!?

Cifarl0 Epoch Time Speedup

N
(8]
T

Optimal speedup

e—e (2.2 worker_batchsize=64
e—e (2.2 worker_batchsize=512
e—e (2.2 worker_batchsize=4096

Time per pass:
time for dataset_size/batch_size
distributed iterations

Bigger Batch
Less Communication
- (smaller time per epoch)
.'IS 110 115 26 2I5 3I0 35

Number of workers

- If small batch is bad, then maximize it

80

70 -

(o)}
o
T

N
o

Number of Epochs

w
o
T

20 +

10

What's wrong with

Cifarl0 - number of epochs to 95% train accuracy

w
o
T

e—e 95% train accuracy, g2.2xlarge

0 500 1000 1500 2000

Batchsize

2500

arge

Batches!?

Large Batch
— worse train error

(more #passes to accuracy €)

Large Batch

—=> some generalization issues

[Keskar, Mudigere, Nocedal,
Smelyanskiy, Tang, ICLR 2017]

How to Analyze mini-batch?

* Measure of performance

bound on #iter of SGD to €
bound on #iter of Parallel SGD to ¢

worst case speedup =

Main Question:

How does minibatch SGD compare against serial SGD?

Main questions:
Convergence after I gradient computations

Answer is Complicated: Depends on Problem

Generally If batch B_0 > B(data, loss)
Minibatch SGD offers no speedup.

Modern Architectures are huge
make everything slower

Model sizes (vision)

o EfficientNet-B7 ~0.5GB of parameters
B6 -

Q: 15 0.5GB that large to cause a bottleneck?

A:When training we compute gradients on
B data points = B*model size RAM required

° "Not plotted
ResNet-34

0 20 40 60 80 100 120 140 160 180
Number of Parameters (Millions)
[Source: http://proceedings.mlrpress/v97//tan | 9a/tan | 9a.pdf]

Model sizes (vision)

~0.5GB of parameters

EfficientNet-B7

84 1
— = -
AmoehaNet-A— - AmoebaNet-C
-
JRe NASNet A L SENet
o 821 7 aot”
-~ |\ 4 e et
> | % L .
5 L.
c© | [0 LT e ResNeXt-101
3 801 >
8 Inceptlon -ResNet-v2
<
-
Q ?
R 781 | ResN
= I P e ResNet-152 Topl Acc. #Params
I ResNet-152 (He et al.,, 2016) | 77.8% 60M
o | -DenseNet-201 EfficientNet-B1 78.8% 7.8M
=% B0 - ResNeXt-101 (Xie et al., 2017)| 80.9% 84M
E761 1 - EfficientNet-B3 81.1% 12M
= ; - ResNet-50 SENet (Hu et al., 2018) 827% 146M
|- NASNet-A (Zoph et al., 2018) | 82.7% 89M
I $ception-va EfficientNet-B4 82.6% 19M
" i nception-v GPipe (Huang et al., 2018) ' 84.3% 556M
EfficientNet-B7 84.4% 66M
NASNet-A :
° Not plotted
ResNet-34 ' . , '] '
0 20 40 60 80 100 120 140 160 180

Number of Parameters (Millions)
[Source: http://proceedings.mirpress/v97//tan | 9a/tan | 9a.pdf]

-

Model sizes (language)

~ | TB of parameters

1000

GPT-3 (175B)

100

Megatron-LM (8.3B)

Model Size (in billions of parameters)
o

BERT-Large (340M)

O
=

ELMo (94M)

0.01
2018 2019 2020 2021 2022

[Source: https://tinyurl.com/Megatron-Turing-NLG]

compression by sparsity

Network Pruning, 1980-20183

Why!?
% % s i inference cost rp%ﬁte
mory

B4
SR BB 2

al, Deng et al, Han et
alLi et al, Wen et al,
Hubara et al, He et al,
Wu et al, Zhu et al,
Cheng et al, Blalock et al,
Levin et al, Mozer et al]

I I [Ledates back tei8Qs et

Network Pruning, 1980-2018

Why!?

7 s | Frey
>< >< =< \ iInference cost pute

Mory

ssue:

training to full acc and THEN pruning |
IS expensive L

Q: Can we avoid: e

t I al, Deng et al, Han et

alLi et al, Wen et al,

Hubara et al, He et al,

Wu et al, Zhu et al

Cheng et al, Blalock et al,
Levin et al, Mozer et al]

LotteryTicket ypothesis (LTH)

»@% W = @ %i

subnets at init trainable to full a

%% @¥§ ~ %i
H

Gradient Compression

Communication / worker:
O(size of gradient) * 32 bits

Gradient Quantization

Quantize to precision:
O(size of gradient) * 2/4/8 bits

O

M @nmm

53 Gradient Sparsification

Sparsified Gradients (k-sparse):
O(k)

Gradients nearly-sparse in SVD

* Observation: Fast decaying spectral profile
(SVD)

- Data Pass: 0
g 0.8 —e— Data Pass: 5
=3 Data Pass: 10
© 0.6
>
-~
£0.4
-
Y A lot of Redundancy!
m 0-2

5 10 15
| Ranks ,
* What it we compress in the spectral domain/?

Hongyi Wang et al."ATOMO: Communication-efficient Learning via Atomic Sparsification”, NeurlPS 2018.

LoRA: Low-Rank Adaptation of
Large Language Models

Edward Hu* Yelong Shen* Phillip Wallis
Zeyuan Allen-Zhu Yuanzhi Li Shean Wang Weizhu Chen
Microsoft Corporation
{edwardhu, yeshe, phwallis, zeyuana, yuanzhil
swang, wzchen}@microsoft.com

PUFFERFISH: COMMUNICATION-EFFICIENT MODELS AT NO EXTRA COST

a D % Hongyi Wang,! Saurabh Agarwal,' Dimitris Papailiopoulos >

Pretrained
Weights

W e RdXd

el

NI R

X | |
Figure 1: Our reparametriza-
tion. We only train A and B.

compression by guantization

) exponent fraction
2
8 bits 7 bits
S|E E E E E E E E/MM[(MIM[{M|M|M

bfloat1é
range: ~le % to ~3e%*

8 bits 23 bits
S E E E E E E E E M M MM MMM~ M M(IM|M|M

float32
range: ~1e~** to ~3e*®

5 bits 10 bits

floatté ., |S|E E E E E|M|[M|[M|M[M|[M|M|M|M|M
range: ~5.9e" to 6.5e

Makes model smaller!

Can affect the training dynamics

Stragsler Nodes

Large-scale Distributed Machine Learning Systems

Storage Communication Computation

Data Distributed :
Data Storage

T

“The scale and complexity of modern Web services
make it infeasible to eliminate all latency variability.”

Network Aggregator

Jeff Dean, Google.

O

tleneck 2: Stra

Calrners

10703846725-30
* 881487600 AV
" g8-Lv87600-TNY
10703846 30
2
98-Lv8T600-TNY
88-Lv87600-TY
Iy
98-Lv87600-TNY

Iteration Completion Time per worker
Data set = CIFAR-10
t2.small EC2 instances
148 worker nodes, 1 parameter server

09} . r fﬁ;
0.8 Ei‘gile : EEEEEEEEEEE
0.7 - i
-l Puime Fatime Can we “robustify” distributed ML
o4 - against stragglers?
0.3 <2z |
0.2} SR R > _6;’6 _______ S
0.1}]
% 0 a0 5 5 ™ Measured on Amazon AWS

A case against Synchronization

overheads

——’A~~—
——————————————

timeline)
)
CPU |
CPU 2
CPU 3

\\\
~

stragglers

Asynchronous VWorld

CPU |
CPU 2
CPU 3

Faster

?
Fasier to
Implement

HOGWILD! w1

"Run parallel lock-free SGD without synchronization”

|

Niu Ré
SVM RCVI (10 cores)

X1 Each processor in parallel S | | | |
Xo . al —Hogwild

sample function f; o AIG

x = read shared memory §3 “RR 7 T

e S .-

g=—7-Vfi(z) ot

for v in the support of f do e]
Xd Ty <= Ty + Go % 2 4 & 8 10

Number of Splits
Impact

Google Downpour SGD, §F Microsoft Project Adam use HOGWILD!
Renewed interest on async. optimization

Challenges in Hogwild!

Shared Memory

Processor |

Issues:

Processor 2 @

- updates can be old
- results can overwritten
- Speedup saturation
- no “‘reproducibility”

Processor P @

Convergence analysis Is usually a pain

A case against Asynchrony

Under review as a conference paper at ICLR 2017

REVISITING DISTRIBUTED SYNCHRONOUS SGD

Jianmin Chen; Xinghao Pan®, Rajat Monga, Samy Bengio Rafal Jozefowicz
Google Brain OpenAl
Mountain View, CA, USA San Francisco, CA, USA

{jmchen, xinghao, rajatmonga,bengio}@google.com rafal@openai.com

ABSTRACT

Distributed training of deep learning models on large-scale training data is typi-
cally conducted with asynchronous stochastic optimization to maximize the rate
of updates, at the cost of additional noise introduced from asynchrony. In con-
trast, the synchronous approach is often thought to be impractical due to idle time
wasted on waiting for straggling workers. We revisit these conventional beliefs
in this paper, and examine the weaknesses of both approaches. We demonstrate
that a third approach, synchronous optimization with backup workers, can avoid
asynchronous noise while mitigating for the worst stragglers. Our approach is
empirically validated and shown to converge faster and to better test accuracies.

A case against Asynchrony

Serializability:
Hogwild Model = SGD Model

‘ Y v . 9 3 B 3 o/ J
of updates, at the cost of additional noise introduced from asynchrony. In con-
trast, the synchronous approach is often thought to be impractical due to idle time
wasted on waiting for stragghing workers. We revisit these conventional beliels
in this paper, and examine the weaknesses of both approaches. We demonstrate

that a third approach, synchronous optimization with backup workers, can avoid
asynchronous noise while mitigating for the worst stragglers. Our approach i1s
empirically validated and shown to converge faster and to better test accuracies.

Robustness During
Inference

The Failures of Deep Learning

panda - gibbon

58% confidence 09% confidence

The Fallures of Deep Learning

Robustness During [raining

Robustness: a key Challenge

Santa Clara, California
Ashburn, Virginia
Prineville, Oregon)i
Forest City, North Carolina Y ae
Lulea, Sweden X
Altoona, lowa
Fort Worth, Texas
Clonee, Ireland
Los Lunas, New Mexico
Odense, Denmark
New Albany, Ohio
Papillion, Nebraska

Fig. 5. Facebook global data center locations as of December 2017.

“For [...] training and Inference [...] the importance of disaster-readiness
cannot be underestimated.”

"Adversaries are constantly searching for new [...] ways to
bypass our identifiers [...]"

Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective [fb, HPCA20 18]

~ederated Learning

°
. °
°
°

: Google Al

Data & models not inspected by central authority

—_—t_e . 7 -]
upda}e/s/ . ¥~ updates 0 0
e . Sl
a ’, / N
— / /new global ' |eamt model: E]
, model personal healthcare

/
/

e _ B8
15 “é =

local data local data

complete the circle.

s SGD Robust!?

master node
(parameter server) P

worker 1 worker 2

s SGD Robust!?

master node
(parameter server) P—1

worker 1 worker 2

Can we build a robust version of SG

minibatch SGD 1s not Robust

+ cheap

- vanilla SG

- easy convergence

D model = robust SG

D that Is;

D) MOC

What's coming next

Understanding mini-batch SGD performance
Hogwild and theoretical challenges
Model/Gradient Compression

Low communication schemes

Straggler Nodes and ways to overcome them

Adversarial attacks, why they happen, how to defend

You want to be here

