
ECE826: Part 2

So far we talked about
- Generalization: why would expect our models to work

- SGD/GD: under what conditions do they work

- Why can we optimize neural networks?

Not a lot of algorithmic design principles for
large-scale learning

Advances and Challenges in
Distributed Machine Learning

We’ll see a lot of principles for scaling up, and designing
the “plumbing” of deep learning systems

Overview
- Multicore vs. Distributed

- Algorithms of choice

- Open challenges with Performance Gains/Analysis

- Communication bottlenecks

- Straggler Nodes

- Robustness

Stochastic Gradient Descent

- Idea (‘50s, ‘60s [Robbins, Monro], [Widrow, Hoff]):
Sample a data point + locally optimize.

loss for data point i

SGD: An Über-algorithm

Stochastic Gradient Descent

- Idea (‘50s, ‘60s [Robbins, Monro], [Widrow, Hoff]):
Sample a data point + locally optimize.

loss for data point i

SGD: An Über-algorithm

Different names and flavors

ML / Optimization / Statistics / EE
Perceptron

Incremental Gradient
Back Propagation (NNs)

Oja’s iteration (PCA)
LMS Filter

…

Has been around for a while, for good reasons:
- Robust to noise
- Simple to implement
- Near-optimal learning performance *
- Small computational foot-print

Stochastic Gradient Descent

GPT-3 would take 288 years to train on a single Tesla
V100 GPU

[source: https://arxiv.org/pdf/2104.04473.pdf]

Goal:
Speed up Machine Learning

Idea:
Train at scale

System Setup

Parallel vs. Distributed
- Parallel (CPU/multicore GPU)
• Single machine, many cores (usually up to 10-100s)
• Shared memory (all cores have access to RAM)
• Comm. to RAM is cheap

- Distributed
• Many machines (usually up to100-1000s) connected via network
• Shared-nothing architecture (each node has its own resources)
• Communication costs non-negligible

Scaling up vs. Scaling out

Scaling up vs. out
What we’d ideally like

• Cores
• RAM
• Comm. Cost
• Cost to build

Feasible solutions:

Scaling up:
• Getting the largest machine possible, with maxed out RAM

Scaling out:
• Getting a bunch of machines, and linking them together

Scaling up vs. out

Scaling up

Pros:
RAM comm. cheap (no network)

Less impl. overheads
Less power/smaller footprint

Cons:
100s cores/machine = expensive

Smaller fault tolerance
Limited upgradability

Scaling out

Pros:
Much cheaper (especially on Ec2)

Can replace faulty parts
Better fault tolerance (if it matters)

Cons:
Network bound

Major implementation overheads
Large power footprint

Should I buy or rent?

Price Comparisons for 4 GPUs racks
• Single machine multi-core (CPU)

 For 4 Tesla V100 GPU work station:

• Alternative Choice: Rent instances
more than $60,000

source	https://lambdalabs.com/blog/tesla-a100-server-total-cost-of-ownership/

Price Comparisons for 4 GPUs racks
• Single machine multi-core (CPU)

 For 4 Tesla V100 GPU work station:

• Alternative Choice: Rent instances
more than $60,000

source	https://lambdalabs.com/blog/tesla-a100-server-total-cost-of-ownership/

Doesn’t sound fun

How to distributed the
compute effort?

Practice

Theory

Distribute the effort!

Several issues

- Many models weaker than one
- Delays and Slow Nodes
- Communication Costs

- Barriers to entry / High Cost
- Implementation Overhead
- Nontrivial choice of ML-framework

How to Parallelize

- Parallelize computation of one update?
Issue:
computing cheap (even for deep nets) [O(d)]

- Parallel Updates?
 Issue: SGD is inherently serial….

Q: Can we parallelize inherently serial algorithms?

Simple idea: mini-batch SGD
- Compute multiple gradients in parallel

Q: Does it perform the same as SGD?

The Master-worker Setting

Algorithm of choice: minibatch SGD

Stores the model

Gradient Computations

Algorithm of choice: minibatch SGD

Algorithm of choice: minibatch SGD

Algorithm of choice: minibatch SGD

Algorithm of choice: minibatch SGD

Algorithm of choice: minibatch SGD

Sergeev, et al. Horovod: fast and easy distributed deep learning in TensorFlow

All-reduce

Sergeev, et al. Horovod: fast and easy distributed deep learning in TensorFlow

All-reduce

Sergeev, et al. Horovod: fast and easy distributed deep learning in TensorFlow

All-reduce

Sergeev, et al. Horovod: fast and easy distributed deep learning in TensorFlow

All-reduce

after K-1 push rounds

[Cotter, Shamir, Srebro, Sridharan, NIPS11]
[Dekel, Gilad-Bachrach, Shamir, Xiao, JMLR 2012]
[Friedlander and Schmidt, SIAM JSC 2012]

[Takác, Bijral, Richtárik, Srebro, ICML 2013]
[Li, Zhang, Chen, Smola, KDD 2014]
[Jain, Kakade, Kidambi, Netrapalli, Sidford, arxiv’16]
[De, Yadav, Jacobs, Goldstein, arxiv’16]

Repeat until convergenceAll-reduce SGD

The Ideal Speedup Should be Proportional to
#Compute Nodes

All-reduce, the server-free case

Many Questions….

• How fast does distributed-SGD converge?
• How can we measure speed?
• How can we update the model faster?
• How can we reduce communication?
• What happens with delayed nodes?
• Does fault tolerance matter?

Compute and Communication
Bottlenecks

Reality ~100x worse than optimal
O

pt
im

al
Sp

ee
d-

up

WHY?

“Large Scale Distributed Deep Networks” [Dean et al., NIPS 2012]

How to analyze parallel algorithms?
• Main measure of performance

- Convergence is invariant of allocation
- Both algorithms reach to same accuracy after T iterations
- Speedup is independent of covergence rate

Example: Gradient Descent

Serial

Parallel

How to analyze parallel algorithms?
• Main measure of performance

- Convergence is invariant of allocation
- Both algorithms reach to same accuracy after T iterations
- Speedup is independent of covergence rate

Example: Gradient Descent

Serial

Parallel

Not true for mini-batch SGD

Embarrassingly Parallel O(#cores) speedup

speedups for minibatch SGD

Two factors control run-time

Time to accuracy ε =
[time per data pass] X [#passes to accuracy ε]

speedups for minibatch SGD

- TL;DR: Communication is the Bottleneck
- Why?

“[…] on more than 8 machines […]
network overhead starts to dominate […]”

Bigger Batch
⇒ Less Communication

(smaller time per epoch)

Time per pass:
time for dataset_size/batch_size

distributed iterations

What’s wrong with Large Batches?

- If small batch is bad, then maximize it

Large Batch
⇒ worse train error

(more #passes to accuracy ε)

Large Batch
=> some generalization issues

[Keskar, Mudigere, Nocedal,
Smelyanskiy, Tang, ICLR 2017]

How to Analyze mini-batch?
• Measure of performance

Main Question:
How does minibatch SGD compare against serial SGD?

Main questions:
Convergence after T gradient computations

Answer is Complicated: Depends on Problem
Generally if batch B_0 > B(data, loss)
Minibatch SGD offers no speedup.

Modern Architectures are huge
make everything slower

Model sizes (vision)

[Source: http://proceedings.mlr.press/v97/tan19a/tan19a.pdf]

~0.5GB of parameters

Q: is 0.5GB that large to cause a bottleneck?

A: When training we compute gradients on
B data points = B*model size RAM required

Model sizes (vision)

[Source: http://proceedings.mlr.press/v97/tan19a/tan19a.pdf]

~0.5GB of parameters

Model sizes (language)

[Source: https://tinyurl.com/Megatron-Turing-NLG]

~1TB of parameters

compression by sparsity

Network Pruning, 1980-2018

random

fully prune

re-train

Why?
- less energy
- less compute
- less memory

prune

[LeCun et al, Hassibi et
al, Deng et al, Han et
al,Li et al, Wen et al,
Hubara et al, He et al,
Wu et al, Zhu et al,
Cheng et al, Blalock et al,
Levin et al, Mozer et al]

dates back to 80s

inference cost

Network Pruning, 1980-2018

random

fully prune

re-train

Why?
- less energy
- less compute
- less memory

prune

[LeCun et al, Hassibi et
al, Deng et al, Han et
al,Li et al, Wen et al,
Hubara et al, He et al,
Wu et al, Zhu et al,
Cheng et al, Blalock et al,
Levin et al, Mozer et al]

dates back to 80s

inference cost

Issue:
training to full acc and THEN pruning

is expensive
Q: Can we avoid?

win the

train prune

train

random

Lottery Ticket Hypothesis (LTH)
Frankle, Carbin, ICLR 2019

“there exist sparse subnets at init trainable to full accuracy”*

re-train

Quantize to precision:
 O(size of gradient) * 2/4/8 bits

Gradient Quantization

Gradient Sparsification

Communication / worker:
 O(size of gradient) * 32 bits

Sparsified Gradients (k-sparse):
 O(k)

Gradient CompressionGradient Compression

• Observation: Fast decaying spectral profile
(SVD)

• What if we compress in the spectral domain?

Gradients nearly-sparse in SVD

A lot of Redundancy!

Hongyi Wang et al. “ATOMO: Communication-efficient Learning via Atomic Sparsification”, NeurIPS 2018.

compression by quantization

Makes model smaller!

Can affect the training dynamics

Straggler Nodes

ComputationStorage

Data Distributed
Data Storage Aggregator

Δ
Δ

Δ Δ

Δ

Δ

Large-scale Distributed Machine Learning Systems

Network

Communication

Δ

Δ

Δ

Δ

“The scale and complexity of modern Web services
make it infeasible to eliminate all latency variability.”

 Jeff Dean, Google.

Bottleneck 2: Straggling Learners

model model model model model

Measured on Amazon AWS

Can we “robustify” distributed ML
against stragglers?

A case against Synchronization

CPU 1

CPU 2

CPU 3

timeline

CPU 1

CPU 2

CPU 3

Asynchronous World

overheads

stragglers

Faster

Easier to
Implement

Impact

 Downpour SGD, Project Adam use HOGWILD!
Renewed interest on async. optimization

HOGWILD! 2011
“Run parallel lock-free SGD without synchronization”

SVM RCV1 (10 cores)

Niu Recht Ré Wright

......

x1
x2

xd

f 1
f 2

f n

Each processor in parallel

Challenges in Hogwild!

Processor 1

Processor 2

Processor P

Shared Memory

Issues:

- updates can be old
- results can overwritten
- Speedup saturation
- no “reproducibility”

Convergence analysis is usually a pain

A case against Asynchrony

A case against Asynchrony

Serializability:
Hogwild Model ≠ SGD Model

Robustness During
Inference

The Failures of Deep Learning

WHY?

The Failures of Deep Learning

WHY?

Robustness During Training

Robustness: a key Challenge

“For […] training and inference […] the importance of disaster-readiness
cannot be underestimated.”

“Adversaries are constantly searching for new […] ways to
bypass our identifiers […]”

Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective [fb, HPCA2018]

Federated Learning

Data & models not inspected by central authority

is SGD Robust?

is SGD Robust?

minibatch SGD is not Robust

Lemma:
A single adversary can arbitrarily corrupt the model, even

if it’s sending the “correct” direction update.
Can we build a robust version of SGD that is:

+ cheap
+ easy convergence
+ vanilla SGD model = robust SGD model

What’s coming next
- Understanding mini-batch SGD performance

- Hogwild and theoretical challenges

- Model/Gradient Compression

- Low communication schemes

- Straggler Nodes and ways to overcome them

- Adversarial attacks, why they happen, how to defend

Information

Theory

Optimization

Systems

You want to be here

