
ECE826 Lecture 11:

The success of Deep Learning:
Is it all about SGD?



Contents

• On the (lack of) Implicit Bias of SGD

• Bad Local Minima Exist

• SGD Can Reach them 



Last time: How fast we can approximate ERM
• The empirical cost function that we have access to

• Question: Can we approximate the solution to this minimization? If so 
how fast?

• The answer must depend on:  
        1) , the sample size 
        2) , the hypothesis class and loss function 
        3) , the data distribution

           4) the optimization algorithm that outputs our classifier
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PL-like conditions hold in neighborhoods around initialization/optima.



Current theoretical SOTA



something odd..



A curious observation on fitting the data



Theorem:

Any data set of size  can be memorized by a 3-layer ReLU neural network with  weights.n O(n)

These constructions can be made in linear time. Yet SGD on the same arch 
needs so much more larger overarm. Why??



But somehow SGD does more than just that..



• Overparameterized, SGD-trained models : 
1. Can fit even completely random labels (i.e., huge capacity)
2. Yet, generalize well

Rethinking Generalization [Zhang et al. ICLR17]



• Overparameterized, SGD-trained models : 
1. Can fit even completely random labels (i.e., huge capacity)
2. Yet, generalize well

Open Question: How can this be?

Rethinking Generalization [Zhang et al. ICLR17]



Possible Explanations of Generalization

• Maybe every model that fits the training data generalizes (no bad global minima)

• Maybe SGD is special “can avoid” bad global minima (implicit regularization)?

• Maybe the data distribution is what allows everything to fall into place?



Maybe all interpolating points generalize!



What is a bad global 
minimum?

Bad Minima = zero margin/complex boundary
=> 100% train error + poor test
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Bad Global Minima Exist

SGD

something else
not all interpolating solutions are good



Possible Explanations of Generalization

• Maybe every model that fits the training data generalizes (no bad global minima)

• Maybe SGD is special “can avoid” bad global minima (implicit regularization)?

• Maybe the data distribution is what allows everything to fall into place?

nope
nope



Maybe (S)GD is special?
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• Let’s say we want to solve a least squares problem  with GD

• Let’s take GD to infinity

• Do you remember what this is called? 
• The minimum Euclidean norm solution of squares solution to 

min
w

∥XTw − y∥2

XTw = y

w∞ = (XTX)−1Xy

out of all the linear functions that interpolate the training data, (S)GD selects 
the minimal Euclidean norm one.

 Wow.

arg min
w

∥w∥2, s.t. WTx = y

IMPLICIT BIAS/Regularization??!!!



GD + LS = a red herring
Theorem

For linear least squares GD converges to the minimum norm solution of  XTw = y

GD is IMPLICITLY regularizing against large norm solutions? It’s Implicitly 
biased towards GENERALIZABLE solutions?



Well, linear LS is what’s special
Theorem

ANY algorithm that converges to 0-error and whose iterates converge to  returns a min norm 

solution to the LS problem.

w∞ = ∑
i

aixi

• Proof:



All interpolating solutions 
in the data span are min norm
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All interpolating solutions 
in the data span are min norm

Theorem

ANY algorithm that converges to 0-error and whose iterates converge to  returns a min norm 

solution to the LS problem.
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i
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OK so maybe GD is … not that special???



for some problems, GD does look like it’s converging on solutions that seem 
to be regularized (small norm), in some sense







Does SGD really regularize??







But maybe some form of hard to describe 
regularization is happening???



Can SGD reach bad global 
minima?

• Of course … if you initialize at a bad global min.

• But, SGD still converges to them, if adversarially initialized 
even without loss-landscape knowledge

We can construct initializers 
using only unlabeled data 

From which SGD is attracted to bad global minima



Adversarial Initialization

Input: Training dataset S; Replication factor R; Noise factor N 

for every image x ∈ S repeat R times
zero-out a random subset of N % pixels in x 
give it a random label
Add it to set C

Train to100% accuracy on C, from a random init using vanilla 
SGD



Random
Initialization

True labels

Random labels

True labels

Can’t “forget” the 
bad initialization

SGD “repairs” the 
boundary just 

enough to fit the data

How Vanilla SGD gets in bad global minima



Vanilla SGD

Regularization saves the day

Data augmentation
+ 

 L2 regularization

Regularization allows 
SGD to escape 

adversarial 
initializations



A recap of the setups

True labels
Random Init

Random labels
Random Init

True labels,
Adversarial Init

True labels labels,
Adversarial init

SOTA SGDVanilla SGD



Experiments
• Data Sets:         Cifar10/100, CINIC10, Restricted Imagenet
• Architectures:  VGG16, Resnet18/50, DenseNet40
• Hyperparameters tuned for faster convergence on train

Random Initializer Setting 1

Setting 2

Setting 3

True labels + VSGD

Random labels + VSGD

Vanilla SGD

SOTA SGD

Adversarial Initializer



Main Findings
• Adversarial initialization causes VSGD up to 40% drop in test accuracy
 
• The model found is close to the adversarial initialization. 

• Data augmentation, momentum, and L2 regularization all contribute to 
SGD escaping adversarial initialization.

• Any two of {DA, M, L2} are enough.



Train Accuracy

TL;DR: 
Everything 

converges to 100% 
train accuracy



Test Accuracy

TL;DR: 
Test error 

deteriorates for 
Vanilla SGD and 
Adv initialization



Model Complexity

ResNet 50 trained on CIFAR10.

TL;DR: 
SGD on adv init has higher complexity measures 

compared to all other models



Effect of Replication Factor

TL;DR: 
The more you augment the randomly labeled set, 

the worse test error becomes



What is the point of all this

The importance of regularization even very far 
away from the minima of the loss landscape.

Regularization affects the entire search dynamics, 
not just around global minima 

Implicit bias is likely weak in comparison to 
explicit regularization



Possible Explanations of Generalization

• Maybe every model that fits the training data generalizes (no bad global minima)

• Maybe SGD is special “can avoid” bad global minima (implicit regularization)?

• Maybe the data distribution is what allows everything to fall into place?

nope
nope

Current implicit bias studies can’t capture such a strong effect
nope



Possible Explanations of Generalization

• Maybe every model that fits the training data generalizes (no bad global minima)

• Maybe SGD is special “can avoid” bad global minima (implicit regularization)?

• Maybe the data distribution is what allows everything to fall into place?

nope
nope

Current implicit bias studies can’t capture such a strong effect
nope

Nobody knows
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