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[ he success of Deep Learning:
s 1t all about SGD!
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e SGD Can Reach them



| ast time: How fast we can approximate ERM
* [he empirical cost function that we have access to

n ( Ryl = - Z £(h(x); ;)
min — — X:),Y;
he#H : n 1 i)

e Question; Can we approximate the solution to this minimization? If so
how fast!

* [he answer must depend on:
) n, the sample size
2) # ,the hypothesis class and loss function

3) &, the data distribution
4) the optimization alsorithm that outputs our classifier
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Subquadratic Overparameterization for
Shallow Neural Networks

Chaehwan Song'* Ali Ramezani-Kebrya'*

Thomas Pethick! Armin Eftekhari?f Volkan Cevher!

something odd..

Table 1: Scaling with the number of training data in the overparameterization regime. QL=quadratic loss,
CLL=convex and Lipschitz loss, SD=separable data.

Depth Algorithm Setting Activation  Scaling Reference
2 GD on layer 1 QL ReLLU Q(n?) Oymak and Soltanolkotabi [38]
L GD on layer L CLL ReLLU Q(n) Kawaguchi and Huang [21]
2 GD SD ReLU Q(n?) Song and Yang [39]
2 GD SDand QL  ReLU Q(nb) Du et al. [12]
L GD SD and QL ReLU Q(n3L?) Zou and Gu [44]
2 GD QL Smooth Q(nz) This paper



A curious observation on fitting the data



Small ReLLU networks are powerful memorizers:
a tight analysis of memorization capacity

Chulhee Yun Suvrit Sra Ali Jadbabaie
MIT MIT MIT
Cambridge, MA 02139 Cambridge, MA 02139 Cambridge, MA 02139
chulheey@mit.edu suvrit@mit.edu jadbabai@mit.edu

Theorem:

Any data set of size n can be memorized by a 3-layer ReLU neural network with O(n) weights.

These constructions can be made In linear time.Yet SGD on the same arch

needs so much more larger overarm. Why!!



But somehow SGD does more than just that..



Rethinking Generalization [Zhang et al. ICLR17]
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Figure 1: Fitting random labels and random pixels on CIFAR10. (a) shows the training loss of
various experiment settings decaying with the training steps. (b) shows the relative convergence
time with different label corruption ratio. (c) shows the test error (also the generalization error since
training error 1s 0) under different label corruptions.

o Overparameterized, SGD-trained models :
. Can fit even completely random labels (i.e., huge capacity)
2. Yet, generalize well
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o Overparameterized, SGD-trained models :
. Can fit even completely random labels (i.e., huge capacity)
2. Yet, generalize well

How can this be!




Possible Explanations of Generalization

* Maybe every model that fits the training data generalizes (no bad global minima)

* Maybe SGD is special “can avoid’ bad global minima (implicit regularization)?

* Maybe the data distribution 1s what allows everything to fall into place?



Maybe all interpolating points generalize!



VWhat Is a bad global
MiNiMumMy?

. Y .
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Bad Minima = zero margin/complex boundary

=> [00% train error + poor test
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Possible Explanations of Generalization

* Maybe SGD is special “can avoid™ bad global minima (implicit regularization)?

* Maybe the data distribution 1s what allows everything to fall into place?



Maybe (S)GD 1s special!
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GD + LS = a red herring

Let's say we want to solve a least squares problem min || X'w — y||? with G
W

k—1
The iterates look like W1y = rXX"Ywy + v ( Z (I — VXXT)’> Xy
1=0

Assuming we start at zero, the rterates of GD look like
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What does that imply? Let's take GD to infinity

W =7y ( Z (I, — yXXT)i> Xy

1=0

Do you remember what this infinite sum converges to!




GD + LS = a red herring

. Let's say we want to solve a least squares problem min || X'w — y||* with GD
w

k—1
The iterates look like Wer1(y = ¥XX)wy + 7 ( Z (I — VXXT)’) Xy
1=0

* Assuming we start at zero, the iterates of GD look like
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* What does that imply! Let's take GD to infinity
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i (I, — yXX" = (xxH)~!
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GD + LS = a red herring

Let's say we want to solve a least squares problem min || X'w — y||? with G
W

Let's take GD to infinity

Weo = (X' X)™' Xy

Do you remember what this Is called!
The minimum Euclidean norm solution of squares solution to X'w =y

arg min ||w||,, st. Wix =y
w




IMPLICIT BIAS/Regularization??!!

Let's say we want to solve a least squares problem min || X'w — y||* with GD
w

Let's take GD to infinity

W, = (XTX)_IXy

Do you remember what this Is called!
The minimum Euclidean norm solution of squares solution to X'w =y

arg min ||w||,, st. Wix =y
w

out of all the linear functions that interpolate the training data, (S)GD selects

the minimal Euclidean norm one.
\VAV/e\YY/




GD + LS = a red herring

Theorem

For linear least squares GD converges to the minimum norm solution of X'w =y

GD 1s IMPLICITLY regularizing against large norm solutions? It's Implicrtly

blased towards GENERALIZABLE solutions!?




Well, inear LS 1s what's specia

T heorem
ANY algorithm that converges to O-error and whose iterates converge to w_ = Z a;x; returns a min norm

i
solution to the LS problem.

e Proof;



All Interpolating solutions
N the data span are min norm

heorem

ANY algorithm that converges to O-error and whose Iterates converge to w,, = Z a;x; returns a min norm
i
solution to the LS problem.

OK so maybe GD is ... not that special???




All Interpolating solutions

heorem

ANY algorithm that ¢ urns a min norm

solution to the LS prc



Implicit Bias of Gradient Descent on Linear

Convolutional Networks Characterizing Implicit Bias in Terms of Optimization Geometry
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Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent
Converges Linearly for Phase Retrieval and Matrix Completion

On the Spectral Bias of Neural Networks
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e {or some problems, GD does look like 1t's converging on solutions that seem
to be regularized (small norm), in some sense
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The Implicit Bias of Gradient Descent on Separable Data
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Theorem 3 For any dataset which is linearly separable (Assumption 1), any [3-smooth decreas-
ing loss function (Assumption 2) with an exponential tail (Assumption 3), any stepsize n <
28 1o-2 (X ) and any starting point w(0), the gradient descent iterates (as in eq. 2) will be-
have as:

w(t) =wlogt+p(?) , (3)
where W is the Lo max margin vector (the solution to the hard margin SVM ):
W = argmin HWH2 st w!x, >1, 4)
weRd

and the residual grows at most as ||p (t)|| = O(loglog(t)), and so

. w(t) \4
lim = —,
t—oo ||lw ()|  ||Wl|

Furthermore, for almost all data sets (all except measure zero), the residual p(t) is bounded.



The Implicit Bias of Gradient Descent on Separable Data

[ Y A N

a N\ D () \ 1 A

Y \YJlI “ e~




Does SGD really regularize!!



Implicit Regularization in ReLLU Networks with the Square Loss

Gal Vardi GAL.VARDI@WEIZMANN.AC.IL and Ohad Shamir OHAD.SHAMIR@ WEIZMANN.AC.IL
Weizmann Institute of Science

Editors: Mikhail Belkin and Samory Kpotufe

Abstract

Understanding the implicit regularization (or implicit bias) of gradient descent has recently been a
very active research area. However, the implicit regularization in nonlinear neural networks is still
poorly understood, especially for regression losses such as the square loss. Perhaps surprisingly, we
prove that even for a single ReLLU neuron, it 1s impossible to characterize the implicit regularization

with the square loss by any explicit function of the model parameters (although on the positive
side, we show it can be characterized approximately). For one hidden-layer networks, we prove

a similar result, where in general it 1s impossible to characterize implicit regularization properties
in this manner, except for the “balancedness” property i1dentified in Du et al. (2018). Our results
suggest that a more general framework than the one considered so far may be needed to understand

implicit regularization for nonlinear predictors, and provides some clues on what this framework
should be.



Implicit Regularization in ReLLU Networks with the Square Loss
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But maybe some form of hard to describe
regularization I1s happening?{?



Can 5SGD reach bad global
Mminima’

o Of course ... If you Initialize at a bad global min.

o But, SGD still converges to them, If adversarially inrtialized
even without loss-landscape knowledge

We can construct inrtializers

using only unlabeled data
-rom which SGD s attracted to bad global minima




Adversarial Inrtialization

Zero-out a

give It a rar

SGD

Input: Training dataset $; Replication factor R; Noise factor N

~ando
dom

Add It to set C

for every image x € S repeat R times

m subset of N 7% pixels in x

abel

Train to100% accuracy on C, from a random Init using vanilla



How Vanlilla SGD gets in bad global minima

nrtia

rue labels

Random )

ization

Random labels

rue labels

SGD “repalirs’ the
boundary just
enough to it the data

Can't "forget’ the
bad Inrtialization




Regularization saves the day

Vanilla SGD 4"
/ : Regularization allows
SGD to escape

ata augmentation
_|_

adversarial
\ o iNrtializations
o
F oo
D .

2 regularization




A recap of the setups
5 -

True labels Random labels True labels, True labels labels,
Random Init Random Inrt Adversarial Init Adversarial inrt

Vanilla SGD SOTA SGD



Cxperiments

 Data Sets. Citar[0/100, CINICI1 0, Restricted Imagenet
e Architectures: VGG 6, Resnet | 8/50, DenseNet40

* Hyperparameters tuned for faster convergence on train

Ly True labels +V5GD .
Random Initializer — se——— Setting |

Random labels + VSGD
anie SV y» Setting 2

Adversarial Intializer

>OTA sGp > Setting 3



Main Findings
Adversarial initialization causes VSGD up to 40% drop in test accuracy

The model found Is close to the adversarial initialization.

Data augmentation, momentum, and L2 regularization all contribute to
SGD escaping adversarial initialization.

Any two of {DA, M, L2} are enough.



[rain Accuracy
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lest Accuracy
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Model Complexity

Frobenious Norm

/>, Path Norm

ResNet 50 trained on CIFARIO.

TL:DR:

{; Path Norm
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SGD on adv init has higher complexity measures
compared to all other models
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What is the point of all this

Implicit bias Is likely weak in comparison to
explicit regularization

Regularization affects the entire search dynamics,
not just around global minima

[ he iImportance of regularization even very far
away from the minima of the loss landscape.




Possible Explanations of Generalization

Current implicit bias studies can't capture such a strong effect

* Maybe the data distribution 1s what allows everything to fall into place?



Possible Explanations of Generalization

* Maybe every model that fits the training data generalizes (no bad global minima)

* Maybe SGD is special “can avoid™ bad global minima (implicit regularization)?

* Maybe the data distribution 1s what allows everything to fall into place?

Noboady knows
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